
# DHCP, ICMP, IPv6





Computer Networking: A Top Down Approach 6th edition

6 edition

Jim Kurose, Keith Ross Addison-Wesley





### Chapter 4: outline

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
  - Datagram format
  - IPv4 addressing
  - Network AddressTranslation (NAT)
  - DHCP
  - ICMP
  - IPv6
  - IPsec

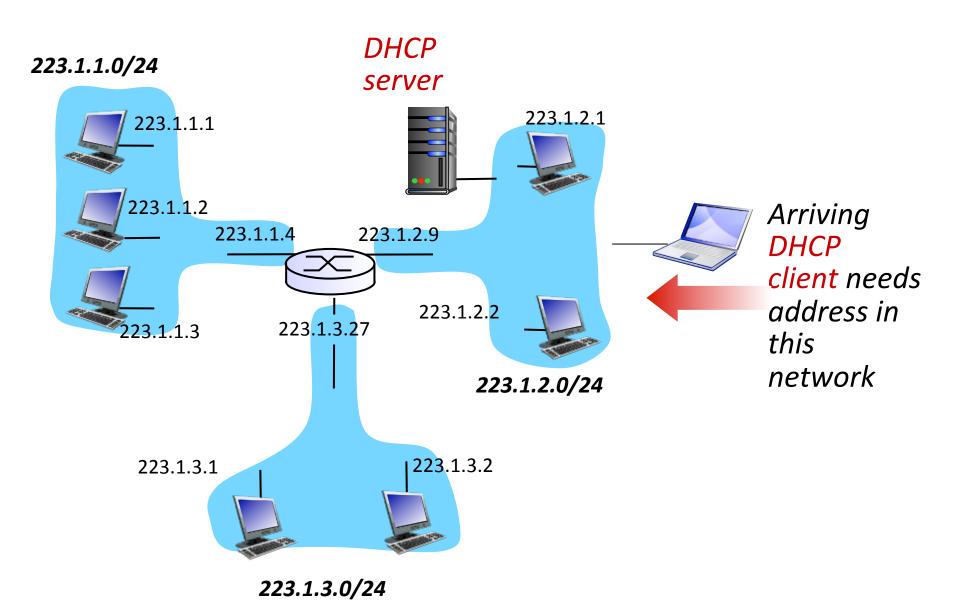
- 4.5 Routing algorithms
  - Link state
  - Distance vector
  - Hierarchical routing
- 4.6 Routing in the Internet
  - RIP
  - OSPF
  - BGP
- 4.7 Broadcast and multicast routing

### IP addresses: How to get one?

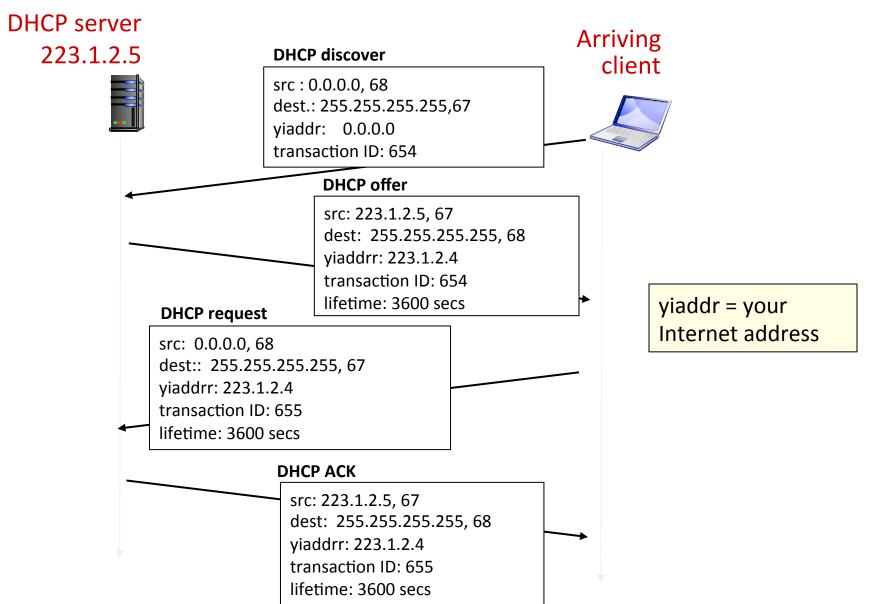
Q: How does a *host* get IP address?

- Hard-coded by in a file:
  - Windows:
    - Control-panel -> Network -> Config -> TCP/IP -> Properties
  - Ubuntu:
    - /etc/network/interfaces
- DHCP: Dynamic Host Configuration Protocol
  - Dynamically get address from a server
  - Plug-and-play

### DHCP protocol


### Goal: Host dynamically obtains IP from network

- Can renew its lease on address in use
- Allows reuse of addresses
  - Only hold address while connected
- Support for mobile users who want to join network

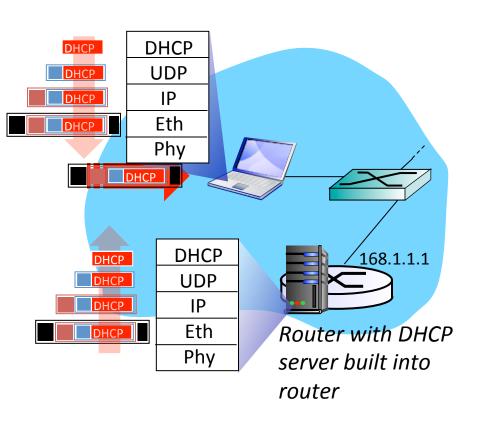

#### DHCP overview:

- Host broadcasts DHCP discover msg
- DHCP server responds with DHCP offer msg
- Host requests IP address: DHCP request msg
- DHCP server sends address: DHCP ACK msg

### DHCP client-server scenario

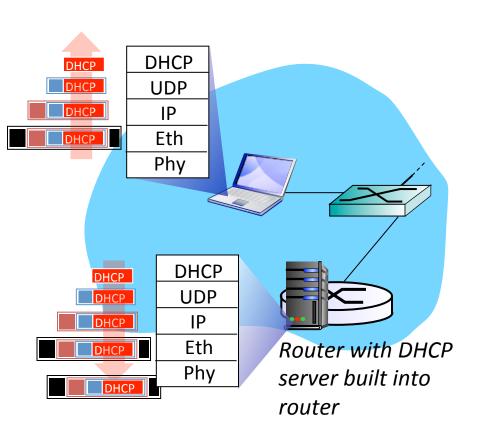


### DHCP client-server scenario




#### DHCP: More than IP addresses

DHCP can return more than just allocated IP address on subnet:


- Address of first-hop router for client
- Name and IP address of DNS sever
- Network mask
  - Indicating network versus host portion of address

# DHCP: example



- Connecting laptop needs IP address, address of first-hop router, address of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in Ethernet
- Ethernet demuxed to IP, UDP demuxed to DHCP

# DHCP: example



- ❖ DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- Encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- Client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router

#### DHCP: Wireshark trace

#### request

Message type: **Boot Request (1)** Hardware type: Ethernet Hardware address length: 6 Hops: 0 Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: 0.0.0.0 (0.0.0.0) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 0.0.0.0 (0.0.0.0) Relay agent IP address: 0.0.0.0 (0.0.0.0) Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) Option: (t=53,l=1) **DHCP Message Type = DHCP Request** Option: (61) Client identifier Length: 7; Value: 010016D323688A; Hardware type: Ethernet Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Option: (t=50,l=4) Requested IP Address = 192.168.1.101 Option: (t=12,I=5) Host Name = "nomad" **Option: (55) Parameter Request List** Length: 11; Value: 010F03062C2E2F1F21F92B 1 = Subnet Mask; 15 = Domain Name 3 = Router; 6 = Domain Name Server 44 = NetBIOS over TCP/IP Name Server

#### reply

Message type: Boot Reply (2) Hardware type: Ethernet Hardware address length: 6 Hops: 0 Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: 192.168.1.101 (192.168.1.101) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 192.168.1.1 (192.168.1.1) Relay agent IP address: 0.0.0.0 (0.0.0.0) Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) Option: (t=53,l=1) DHCP Message Type = DHCP ACK **Option:** (t=54,l=4) Server Identifier = 192.168.1.1 Option: (t=1,l=4) Subnet Mask = 255.255.255.0 **Option:** (t=3,l=4) Router = 192.168.1.1 **Option: (6) Domain Name Server** Length: 12; Value: 445747E2445749F244574092; IP Address: 68.87.71.226; IP Address: 68.87.73.242; IP Address: 68.87.64.146 Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."

# Network error reporting

- Internet Control Message Protocol (ICMP)
  - Considered network layer
    - But ICMP carried inside IP datagram (like TCP/UDP)
  - Error messages sent back to host by routers
  - ICMP used by some user utilities:
    - traceroute
    - ping

#### **ICMP**



#### ICMP Message Types Checksum Type Code/Name Type Code/Name Type Code/Name Checksum of ICMP 3 Destination Unreachable (continued) 0 Echo Reply 11 Time Exceded header 3 Destination Unreachable 12 Host Unreachable for TOS 0 TTL Exceeded Net Unreachable 13 Communication Administratively Prohibited 1 Fragment Reassembly Time Exceeded **RFC 792** 1 Host Unreachable 4 Source Quench 12 Parameter Problem 2 Protocol Unreachable 5 Redirect 0 Pointer Problem Please refer to RFC 3 Port Unreachable 0 Redirect Datagram for the Network 1 Missing a Required Operand 4 Fragmentation required, and DF set 1 Redirect Datagram for the Host 2 Bad Length 792 for the Internet 5 Source Route Failed 2 Redirect Datagram for the TOS & Network 13 Timestamp Control Message 6 Destination Network Unknown 3 Redirect Datagram for the TOS & Host 14 Timestamp Reply

protocol (ICMP) specification.

7 Destination Host Unknown

9 Network Administratively Prohibited

10 Host Administratively Prohibited

8 Source Host Isolated

8 Echo

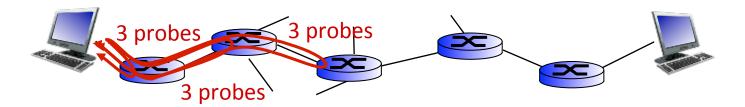
9 Router Advertisement

10 Router Selection

15 Information Request

18 Address Mask Reply

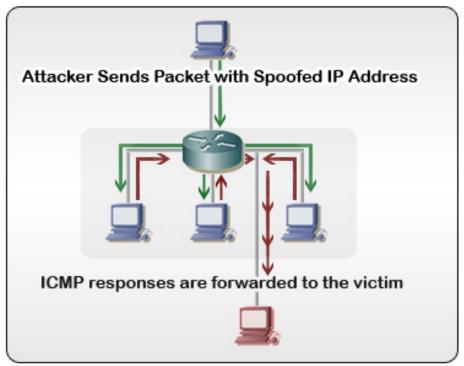
16 Information Reply 17 Address Mask Request


#### Traceroute and ICMP

- Source sends series of UDP segments to dest
  - First set has TTL =1
  - Second set has TTL=2, etc.
  - Unlikely port number
- When nth set of datagrams arrives to nth router:
  - Router discards datagrams
  - Sends source ICMP messages (type 11, code 0)
  - ICMP messages includes name of router & IP address

When ICMP messages arrives, source records RTTs

#### Stopping criteria:


- UDP segment eventually arrives at destination host
- Destination returns ICMP port unreachable message (type 3, code 3)
- Source stops



### **Smurf Attack**

#### Denial-of-Service attack

- Attacker sends stream of ICMP echo requests
- Sent to networkbroadcast address
- Uses spoofed IP of victim
- Generates large amounts of traffic on target network




### New and improved Internet Protocol

- Birth of IP version 6
  - Started looking at IPv4 exhaustion in 1991
  - Increase address size → new IP packet header
    - Thus new software for every Internet host/router
    - Might as well overhaul the whole thing
    - Draft standard in 1998

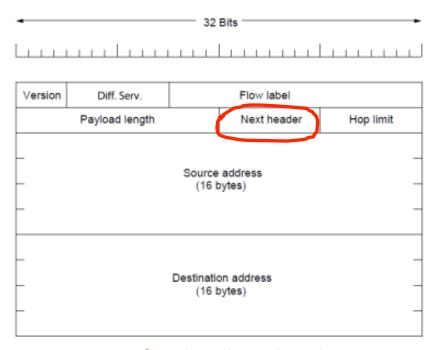








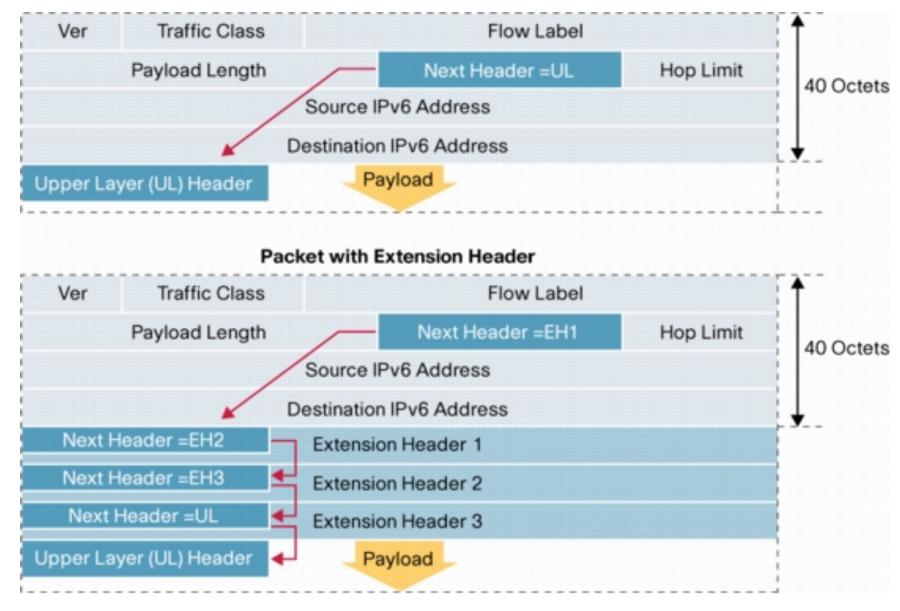
### 1. Support billions of hosts


- $-2^{128}$  addresses  $\approx 3 \times 10^{38}$
- If entire planet covered with computers:
  - 7 x 10<sup>23</sup> IPs/ m<sup>2</sup>, pessimistic util. scenario: 1000 IPs / m<sup>2</sup>
- Address format: 8 groups of 4 hex digits

| Full address        | 8000:0000:0000:0000:0123:4567:89AB:CDEF |
|---------------------|-----------------------------------------|
| Abbreviated         | 8000::0123:4567:89AB:CDEF               |
| IPv4 mapped to IPv6 | ::FFFF:192.31.20.46                     |

| 000 (128 bits)  | Unspecified                                |
|-----------------|--------------------------------------------|
| 001 (128 bits)  | Loopback                                   |
| 1111 1111       | Multicast address                          |
| 1111 1110 10    | Link-local unicast                         |
| Everything else | Global unicast addresses, 99% of the space |

### 2. Simplify the protocol


- Allow routers to process packets faster
- Support gigabit/terabit routing
  - Predictable header size (40 bytes)
  - Removed little used fields
  - No checksum
- Allow future evolution
- Extension headers



IPv6 fixed 40-byte header.

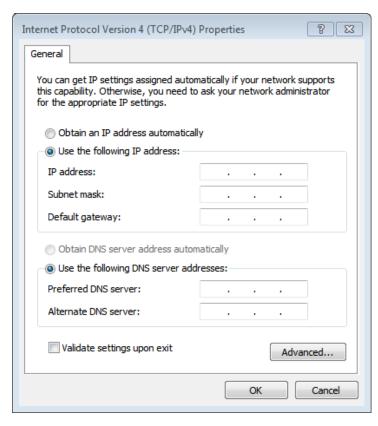
| IPv4 Header                                                                                                           |                 |                    | IPv6 Header         |             |                |               |            |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|---------------------|-------------|----------------|---------------|------------|--|
| Version                                                                                                               | IHL             | Type of<br>Service | Total Length        |             | Version        | Traffic Class | Flow Label |  |
| Identification Flags                                                                                                  |                 | Fragment<br>Offset | Payload Length      |             | Next<br>Header | Hop Limit     |            |  |
| Time to L                                                                                                             | ive             | Protocol           | Head                | er Checksum |                |               |            |  |
| Source Address                                                                                                        |                 | Source Address     |                     |             |                |               |            |  |
| Destination Address                                                                                                   |                 |                    |                     |             |                |               |            |  |
|                                                                                                                       | Options Padding |                    |                     |             |                |               |            |  |
|                                                                                                                       |                 |                    |                     |             |                |               |            |  |
| Legend Field's name kept from IPv4 to IPv6 Field not kept in IPv6 Name and position changed in IPv6 New field in IPv6 |                 |                    | Destination Address |             |                |               |            |  |

http://www.cisco.com/en/US/technologies/tk648/tk872/technologies\_white\_paper0900aecd8054d37d.html



http://www.cisco.com/en/US/technologies/tk648/tk872/technologies white paper0900aecd8054d37d.html

### **Extension headers**


#### Next header field

- Allows chain of extension headers
- Last one indicates payload protocol
  - e.g. 6 = TCP, 17 = UDP

| <b>Extension header</b>    | Description                                                                                                                                                       |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hop-by-hop options         | Only extension that must be processed by all nodes. Support for datagrams exceeding 64 KB.                                                                        |
| Destination options        | Fields needed at destination host.                                                                                                                                |
| Routing                    | Lists one or more routers than must be visited on the way to destination. Similar to IPv4 loose source routing.                                                   |
| Fragmentation              | Datagram identifier, fragment number, more fragments to follow. Must be done by source host, no fragmentation allowed in-route. IPv6 requires MTU path discovery. |
| Authentication             | Receiver can verify who sent it.                                                                                                                                  |
| Encrypted security payload | Allows payload to be encrypted so only receiver can read it.                                                                                                      |

#### 3. Autoconfiguration of hosts

- Guaranteed unique IPv6 addr: prefix + 48-bit MAC
- Avoid users dealing with 16 bytes addresses






192.168.1.3

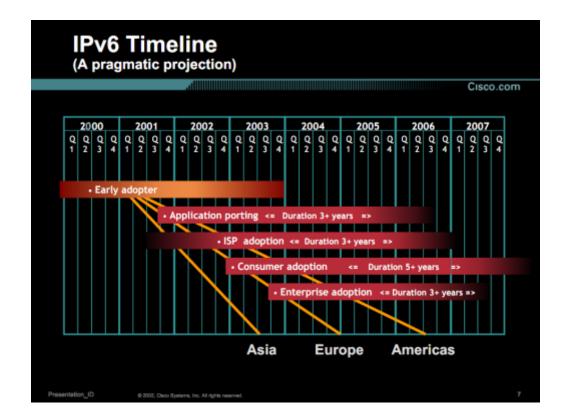
8000:0000:0000:0000:0123:4567:89AB:CDEF

#### 4. Multicast/multimedia

- Multicast a requirement, no longer optional
- IPv4 DiffServ field + new 20-bit traffic flow field
- Anycast, one address for a group of nodes
  - Delivery to only one node
  - Fault-tolerance, load balancing
  - Routing to closest node

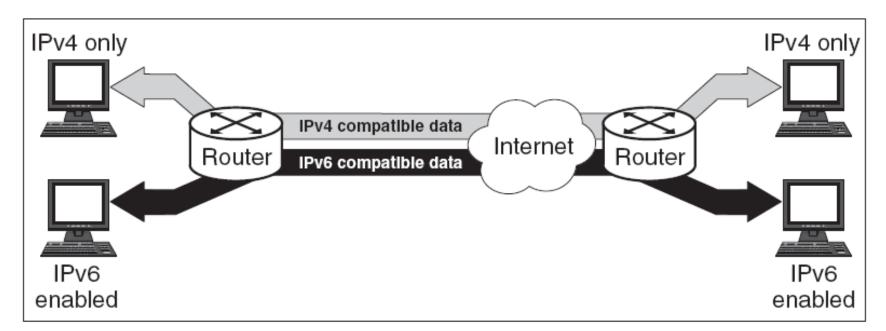


#### 5. Improved security


- IP security architecture (IPSec)
  - End-to-end security at the network layer
  - Must be in a IPv6 complaint node
  - An optional feature of an IPv4 node
- Authentication header (AH)
  - Supports many different authentication techniques
  - Protects against attacks based on masquerading
- Encapsulating security payload (ESP)
  - Integrity and confidentiality of datagram

#### 6. Support for mobile hosts

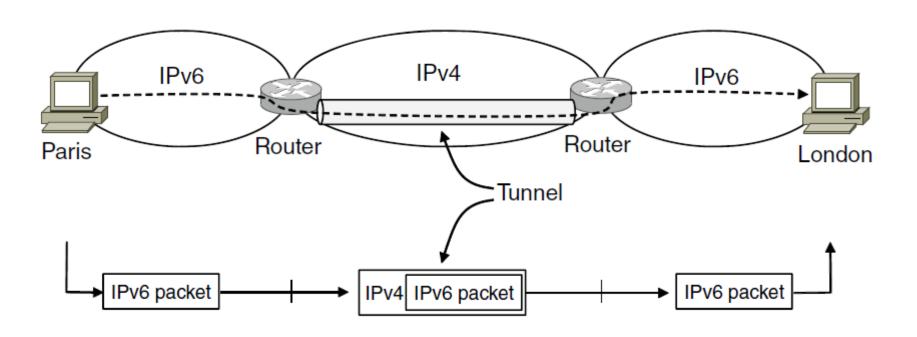
- Mobile clients likely to be majority of IPv6 hosts
- Mobile IPv6 (RFC 3775)
- Use IPv6 features:
  - Stateless autoconfiguration
  - Neighbor discovery
  - Extension headers such as routing header


### 7. Ease of deployment

- Achilles heel of IPv6
  - Google 2008 estimate, < 1% of traffic</li>
- We can't have a "flag" day to switch over



# Deploying IPv6


- Dual-stack operation
  - IPv6 nodes also run IPv4
    - Consult version field in header to decide
  - Supported by major OS's for a long time
  - Any IPv4-only node in path = loss of IPv6 info





# **Deploying IPv6**

- Tunneling IPv6 over IPv4 networks
  - Route IPv6 traffic over network segment that only understands IPv4



#### **IPsec**

#### Internet Protocol

 Designed in the 1970s by mutually trusting researchers, security not a major design concern

#### IPsec

- Connection-oriented security between two hosts
- Cryptographic agreement, what algorithms/keys
- Encryption of payload
- Data integrity, payload not modified in transit
- Origin authentication, source is the real source

### Summary

- Getting an IP address
  - DHCP protocol
- Sending network info/error messages
  - ICMP protocol
- Dealing with IPv4 address scarcity
  - IPv6
- Security at the network-layer
  - IPsec