
1

CSCI 135 Exam #1 Name: __________________________________
Fundamentals of Computer Science I
Fall 2013

This exam consists of 5 problems on the following 7 pages.

You may use your two-sided hand-written 8 ½ x 11 note sheet during the exam. No calculators, computers, or
communication devices of any kind are permitted.

If you have a question, raise your hand and I will stop by. Since partial credit is possible, please write legibly
and show your work.

Problem Points Score

1 8

2 10

3 19

4 16

5 10

Total 63

2

1. Loops, input (8 points). Consider the following program:

public class Prob1
{
 public static void main(String [] args)
 {
 int i;
 for (i = 0; i < args.length - 1; i++)
 {
 double val1 = Integer.parseInt(args[i]);
 double val2 = Integer.parseInt(args[i + 1]);

 if (val1 > val2)
 break;
 }
 if (i == args.length - 1)
 System.out.println("yes");
 else
 System.out.println("no");
 }
}

Give the output of Prob1 for each of the following commands. If the program would crash, write "error":

Command Program output

% java Prob1 3 7 9

% java Prob1 -5 0 4 2 10

% java Prob1

% java Prob1 3.5 4.5 5.5

% java Prob1 8

% java Prob1 1 1 1 1 1 1 1 1

3

2. Multiple choice (10 points, 2 points each). Circle the best single answer.

I. Consider the following code fragment:

 int i = 5 / 10;
 System.out.println(i);

What is the output of the System.out.println?

a) 0

b) 0.5

c) 1

d) none of the above

II. Consider the following code fragment:

 int i = 2;
 i++;
 ++i;
 i = i + 1;
 System.out.println(i);

What is the output of the System.out.println?

a) 2

b) 3

c) 4

d) 5

III. The private keyword when added to the declaration of an instance variable of a class helps enforce

which of the following principles?

a) data encapsulation

b) immutability

c) avoiding repeated code

d) divide-and-conquer

IV. The Fraction class we developed in class had a private helper method named reduce that reduced the

fraction object to lowest terms. This was done for which of the following reasons?

a) to allow sorting of Fraction objects

b) to make the class immutable

c) to avoid repeated code from appearing in multiple methods (e.g. in both add and substract).

d) to serve as a base case for the recusion

V. The this keyword can be used in an instance method to achieve which of the following?

a) creating a new instance of the class

b) specifying the use of an instance variable when there is an identically named local or parameter

variable

c) avoiding repeated code

d) hiding implementation details from clients of the class

4

3. Objects, standard input, arrays (19 points). Consider the following class that represents a charged particle:

public class Charge
{
 private double rx, ry; // position
 private double q; // charge

 public Charge(double x0, double y0, double q0)
 {
 double rx = x0;
 double ry = y0;
 double q = q0;
 }
}

a) What is wrong with the above code?

b) Assume you fixed the problem in part a. You are now developing a client program that reads via standard
input a list of charged particles. Here is an example file 3charge.txt with a positively charged particle at (0.5,
0.7), a neutral particle at (1.0, 0.1), and a negative particle at (-2.25, -10.5):

 3
 0.5 0.7 +1.0
 1.0 0.1 0.0
-2.25 -10.5 -1.0

For now, the program just reads and stores all the charged particles in an array. Below is the skeleton of the
client program. In the empty boxes, write the letter of the code fragments that combine to create a correct
implementation. Not all letters will be used and each letter can only be used once.

public class ChargeClient
{
 public static void main(String [] args)
 {
 = StdIn.readInt();

 Charge [] particles = ;

 (= 0; i < N; i++)
 {
 double x = StdIn.readDouble();
 double y = StdIn.readDouble();

 double q = ;

 particles[i] = ;
 }
 }
}

A. int i
B. final int i
C. String N
D. final int N
E. Charge[N]
F. new Charge[N]
G. new Charge()
H. new Charge(N)
I. new Charge(x, y, q)
J. Charge(x, y, q)
K. StdIn.readInt()
L. StdIn.readDouble()
M. !StdIn.isEmpty()
N. Double.parseDouble(args[0])
O. Double.parseDouble(args[1])
P. while
Q. for
R. do while
S. null

(continued on next page)

5

3. Objects, standard input, arrays (continued)

c) In an effort to test your program from part b, you added the following line of code to the end of the loop:
 System.out.println(particles[i]);

Unfortunately, you are getting strange looking output. Here is an example run using the example input file:

 % java ChargeClient < 3charge.txt
 Charge@128ef465
 Charge@674f1c67
 Charge@7ad1e32d

What is the name of method you need to implement to get the above System.out.println to produce more
sensible output?

What class should this method be added to?

d) Match the description on the left with the signature of an instance method of Charge that would best
provide the stated functionality. Each letter will be used exactly once.

Return the net force exhibited on a given particle by a
list of zero or more other particles.

A. public boolean foo1()

B. public boolean foo2(double a)

C. public boolean foo3(Charge a)

D. public double foo4(Charge a)

E. public double foo5(Charge [] a)

F. public Charge()

G. public Charge(Charge a)

H. public Charge(Charge a, Charge b)

Return a new particle that has the same location and
charge of an existing particle.

Return a new particle that has a location and charge
that is the average of two existing particles.

Return a new particle with some default location and
charge.

Return the Euclidean distance between two particles.

Determine whether two particles have the same
charge.

Determine whether a particle is negatively charged.

Determine whether a particle's position is within a
given radius of the origin.

6

4. Static methods (16 points). Consider the following library containing a number of static methods:

public class NumHelpers
{
 public static int foo(int a, int b)
 {
 a = a + b;
 return a;
 }

 public static boolean foo(int n)
 {
 return (n % 2 == 0);
 }

 public static int foo(int a, int b, int c)
 {
 return Math.max(a, Math.max(b, c));
 }

 public static int foo(int target, int [] vals)
 {
 int result = 0;
 for (int i = 0; i < vals.length; i++)
 {
 if (vals[i] == target)
 result++;
 System.out.printf("TRACE %d %d %d %d\n", i, vals[i], target, result);
 }
 return result;
 }
}

a) Assume you are developing code a program Calculator.java that makes use of the NumHelpers library.

Mark whether each of the following lines is valid (i.e. compiles) or invalid (i.e. causes a compile error).

Code Valid Invalid

boolean r1 = NumHelpers.foo(20);

boolean r2 = foo(20);

int r3 = NumHelpers.foo(10.0, 20.0);

boolean r4 = (NumHelpers.foo(-5, 23, 928) > 5.0);

int r5 = NumHelpers.foo(Integer.parseInt("2"), Integer.parseInt("3"));

int r6 = NumHelpers.foo(1, 2, 3, 4);

(continued on next page)

7

4. Static methods (continued)

b) For each of methods in NumHelpers implemented on the previous page, briefly describe what it does (i.e.
given its input what does the output of the method represent).

public static int foo(int a, int b)

public static boolean foo(int n)

public static int foo(int a, int b, int c)

public static int foo(int target, int [] vals)

c) The following code fragment makes use of the first method in NumHelpers. What does it output?

int a = 5;
int b = NumHelpers.foo(1, 2);
System.out.println("a = " + a + ", b = " + b);

d) The following code fragment makes use of the last method in NumHelpers. Fill in the table giving the values

output by the TRACE System.out.printf statement in the method (you may not need all rows). As the

printf outputs 4 values, fill out the table cells showing these values for each loop iteration on the given input.

int [] data = {1, 4, 8, 4};
NumHelpers.foo(4, data);

TRACE

TRACE

TRACE

TRACE

TRACE

TRACE

8

5. Recursive drawing (10 points). Label each StdDraw output with the letter of the recursive method that
generated it, each image was generated by exactly one of the methods. Each method was initially called with
the same parameters: drawX(n, 0.5, 0.5, 0.25); One of the recursive methods generates a stack
overflow due to unbounded recursion, circle this method.

static void drawA(int n, double x, double y, double s)
{
 if (n <= 0) return;
 if (n % 2 == 0)
 StdDraw.setPenColor(StdDraw.RED);
 else
 StdDraw.setPenColor(StdDraw.BLUE);
 StdDraw.filledSquare(x, y, s);
 drawA(n - 1, x - s, y - s, s / 2.0);
 drawA(n - 1, x + s, y - s, s / 2.0);
}

static void drawB(int n, double x, double y, double s)
{
 if (n % 2 == 0)
 StdDraw.setPenColor(StdDraw.RED);
 else
 StdDraw.setPenColor(StdDraw.BLUE);
 StdDraw.filledSquare(x, y, s);
 drawB(n - 1, x - s, y + s, s / 2.0);
 drawB(n - 1, x + s, y + s, s / 2.0);

}

static void drawC(int n, double x, double y, double s)
{
 if (n <= 0) return;
 if (n % 2 == 0)
 StdDraw.setPenColor(StdDraw.RED);
 else
 StdDraw.setPenColor(StdDraw.BLUE);
 StdDraw.filledSquare(x, y, s);
 drawC(n - 1, x - s, y + s, s / 2.0);
 drawC(n - 1, x + s, y + s, s / 2.0);
 drawC(n - 1, x - s, y - s, s / 2.0);
 drawC(n - 1, x + s, y - s, s / 2.0);

}

static void drawD(int n, double x, double y, double s)
{
 if (n <= 0) return;
 if (n % 2 == 0)
 StdDraw.setPenColor(StdDraw.RED);
 else
 StdDraw.setPenColor(StdDraw.BLUE);
 StdDraw.filledSquare(x, y, s);
 drawD(n - 1, x - s, y + s, s / 4.0);
 drawD(n - 1, x + s, y + s, s / 2.0);
}

