CSCI 135 Programming Exam #1
Fundamentals of Computer Science |
Fall 2013

This part of the exam is like a mini-programming assignment. You will create a program, compile it, and
debug it as necessary. This part of the exam is open book and open web. You may use code from the course
web site or from your past assignments. When you are done, submit all your Java source files to the
Moodle exam #1 dropbox. Please double check you have submitted all the required files.

You will have 100 minutes. No communication with any non-staff members is allowed. This includes all
forms of real-world and electronic communication.

Grading. Your program will be graded on correctness and to a lesser degree on clarity (including comments)
and efficiency. You will lose a substantial number of points if your code does not compile or crashes on
typical inputs.




Overview. Wildfires are burning all across Montana and the forest service needs your help! You need to
develop a program that can schedule missions for its fleet of tanker planes. To help plan tanker missions,
the forest service has obtained infrared satellite photos of areas of interest. Here is an example image:

The white blobs represent currently burning wildfires. The whiter the color, the more intense the heat at
that location. Any pixel that is completely black with a red-green-blue (RGB) value of (0, 0, 0) is considered
to be not on fire. All other non-black pixels are considered to be on fire. You will be using images such as
the one above to decide where the tankers should drop water. We adopt a simplified model of firefighting
based on the pixels in the image:

* Tankers always fly from north-to-south in a straight vertical line.
* Tankers have unlimited water and can completely extinguish all areas on fire below them.
* Tankers extinguish fires within a given width of their north-to-south flight path.

You will be first implement FireUtil.java which contains a library of static methods useful for
firefighting-related things given a satellite image. Once you have your library of handy methods, you will
implement FireMissions.java which actually determines where to send each tanker mission.

To get started, create an empty Eclipse project and extract the contents of this zip file into your project
directory: http://katie.mtech.edu/classes/csci135/fire.zip

Part 1: FireUtil. This class provides a library of static methods, here is the APl you are to implement:

public class FireUtil

long getTotalPixels(Picture pic) // Get the total pixels in Picture pic
boolean isOnFire(Picture pic, int x, int y) // See if the pixel at (x,y) is on fire
int getNumOnFireAtX(Picture pic, int x) // Count fire pixels at vertical slice = x
double getPercentOnFire(Picture pic) // Calc. % of total pixels that are fire
void dropWaterAtX(Picture pic, int x) // Turn pixels black at vertical slice = x

void dropWaterAroundX(Picture pic, int x, int w) // Turn pixels black in [x-w, x+w]

We have provided a stub version of FireUtil. java that includes more extensive comments describing
what each method should do. In particular, your methods need to be defensive; they should avoid crashing
if the client asks for silly things (e.g. specifying out-of-range x- or y-coordinate). The comment at the top of
each method declaration describes exactly what to return if a client asks for something nonsensical.

Note: You may want to develop your methods in the order listed above. This will help you avoid repeated
code; the earlier methods are often quite useful for implementing the latter methods.
2



Your program will be making use of the provided Picture. java library. Here is the relevant API:

public class Picture

Picture(String filename) // Load a picture from the specified image filename

Color get(int i, int j) // Get color of pixel at (i, j), note (9,0) is upper-left
void set(int i, int j, Color c) // Set color of pixel (i, j) to c, note (0,0) is upper-left
void save(String name) // Save the picture to a file in a standard image format

int width() // Return the width of the picture in pixels
int height() // Return the height of the picture in pixels
void show() // Display the picture in a window (useful for debugging)

Note: Picture's get and set methods use (i, j) to specify the location of pixels. In terms of our
FireUtil API, i is a pixel's x-coordinate and j is a pixel's y-coordinate. You will also need to make use of
Java's built-in Color class to determine if a pixel is on fire or not. Here is the relevant API:

public class java.awt.Color

int getRed() // Returns the red component in the range ©-255
int getGreen() // Returns the green component in the range ©-255
int getBlue() // Returns the blue component in the range ©-255

We have provided a main method that extensively tests the methods in FireUtil. The main method reads
in the filename specified as the first command-line argument. It also opens a window showing the image
after some firefighting has occurred. Here is an example run including the resulting image (the black streaks
represent the tanker drops that were performed by my test main):

® O C heat512.png

% java FireUtil heat512.png File
getTotalPixels(pic) 262144

isPixelOnFire(pic, 10, 10) = false
isPixelOnFire(pic, 129, 145) = true
isPixelOnFire(pic, 135, 128) = true
isPixelOnFire(pic, 9999, 128) = false

isPixelOnFire(pic, -1, 128) = false

isPixelOnFire(pic, 10, 9999) = false

isPixelOnFire(pic, 10, -1) = false

getNumPixelsOnFireAtX(pic, -1) = ©

getNumPixelsOnFireAtX(pic, 5) = 82

getNumPixelsOnFireAtX(pic, 58) = ©

getNumPixelsOnFireAtX(pic, 9999) = @

getPercentOnFire(pic) = 14.6320

dropWaterAtX(pic, -1), getPercentOnFire(pic) = 14.6320
dropWaterAtX(pic, 5), getPercentOnFire(pic) = 14.6008
dropWaterAtX(pic, 58), getPercentOnFire(pic) = 14.6008
dropWaterAtX(pic, 9999), getPercentOnFire(pic) = 14.6008
dropWaterAroundX(pic, -9999, 5), getPercentOnFire(pic) = 14.6008
dropWaterAroundX(pic, 100, 5), getPercentOnFire(pic) = 14.3429
dropWaterAroundX(pic, 512, 10), getPercentOnFire(pic) = 14.2406
dropWaterAroundX(pic, 300, 1), getPercentOnFire(pic) = 14.1842
dropWaterAroundX(pic, 350, 0), getPercentOnFire(pic) = 14.1331
dropWaterAroundX(pic, 400, -5), getPercentOnFire(pic) = 14.1331

dropWaterAroundX(pic, 9999, 50), getPercentOnFire(pic) = 14.1331
3



Part 2: FireMissions. This program decides how to execute a series of 0 or more tanker missions.
FireMissions.java will make use of the static methods you created in FireUtil. java. The program
takes 4 command-line arguments:

* image - Filename of the satellite image.

* max missions - How many tanker missions to simulate. If this is set to -1, the program continues to
simulate missions until all fires in the given image have been extinguished.

* width extinguished - A non-negative integer specifying how wide a swath the tanker extinguishes. A
width of 0 indicates to put out fire only directly on the flight path (pixels at x). A width of 1 would
put out fire on the flight path as well as pixels one to the left and right (pixels at x-1, x, and x+1),
and so on.

* outimage - Output filename for the image resulting from all the executed missions.

If fewer than 4 command line arguments are passed to it, your program should print the message shown in
this example run:

% java FireMissions
FireMissions <image> <max missions, -1=no limit> <width extinguished> <out image>

If 4 command-line arguments are given, your program should load the specified image and first print out
the percent of fire in the image (rounded to two decimal places). The program then simulates O or more
tanker missions. Your scheduling algorithm uses a simple greedy strategy:

* The next flight should be centered at the x-coordinate with the highest number of fire pixels.

* Note: For purposes of finding the best x-coordinate, we ignore the width of the tanker's spray. We
simply find the vertical pixel slice through the image that currently has the most fire pixels. This is
suboptimal but simpler.

* Inthe event of a tie (multiple x-values with the same number of fire pixels), use the smallest x-value.

* Missions continue until either all fire has been extinguished or the specified number of missions
have been reached.

Each mission should print out the mission number, the number of fire pixels at the peak location, and the x-
coordinate of the peak. Your program should then drop water at this x-coordinate using the width specified
on the command-line. After each mission, it should print out the percentage of fire remaining (rounded to
two decimal places). After all missions are complete, save the final image to the filename specified as the
last command-line argument.

Here are a series of sample runs and the corresponding output image:

% java FireMissions heat512.png @ 10 out.png
At start, percent on fire: 14.63




% java FireMissions heat512.png 2 10 out.png
At start, percent on fire: 14.63

Mission #1
Peak of 180 fire pixels at x = 335
After drop, percent on fire: 13.26

Mission #2
Peak of 171 fire pixels at x = 324
After drop, percent on fire: 12.61

% java FireMissions heat512.png -1 100 out.png
At start, percent on fire: 14.63

Mission #1
Peak of 180 fire pixels at x = 335
After drop, percent on fire: 8.62

Mission #2
Peak of 164 fire pixels at x = 164
After drop, percent on fire: 3.23

Mission #3
Peak of 140 fire pixels at x = 463
After drop, percent on fire: 1.18

Mission #4
Peak of 92 fire pixels at x = 13
After drop, percent on fire: 0.00

% java FireMissions heat512.png 20 100 out.png
At start, percent on fire: 14.63

Mission #1
Peak of 180 fire pixels at x = 335
After drop, percent on fire: 8.62

Mission #2
Peak of 164 fire pixels at x = 164
After drop, percent on fire: 3.23

Mission #3
Peak of 140 fire pixels at x = 463
After drop, percent on fire: 1.18

Mission #4
Peak of 92 fire pixels at x = 13
After drop, percent on fire: 0.00

% java FireMissions black.png 10 10 out.png
At start, percent on fire: 90.00




