CSCI 135 Programming Exam #0
Fundamentals of Computer Science |
Fall 2013

This part of the exam is like a mini-programming assignment. You will create a program, compile it, and
debug it as necessary. This part of the exam is open book and open web. You may use code from the course
web site or from your past assignments. When you are done, submit all your Java source files to the
Moodle exam #0 dropbox. Please double check you have submitted all the required files.

You will have 100 minutes. No communication with any non-staff members is allowed. This includes all
forms of real-world and electronic communication.

Grading. Your program will be graded on correctness and to a lesser degree on clarity (including comments)
and efficiency. You will lose a substantial number of points if your code does not compile or crashes on
typical inputs.

Overview. You are planning to move and are writing some software to help in your planning. You will be
developing two programs RandomBoxes . java and MoveBoxes . java. The first program RandomBoxes . java
generates random data about boxes that you need moved. The second program takes input of the form
generated by RandomBoxes . java and simulates a simplistic moving process. It will calculate how many
loads it will take with a truck of a given size and how many hours you'll spend driving. For the purposes of
this problem, we assume a simplistic packing arrangement in the truck. We assume boxes take up the
entire width of the truck and we never stack boxes on top of each other. So basically each box has only one
dimension, namely its length. You have a single moving truck of a certain length.

=

O O

Stub versions of these two programs as well as test files and StdIn.java can be downloaded from here:
http://katie.mtech.edu/classes/csci1l35/moving.zip

Part 1, RandomBoxes: Your first task is to develop a program that generates random box data. Your
RandomBoxes . java program should generate a specified number of boxes with each box appearing on a
separate line. Each line of output should contain three whitespace separated fields (in this order):

1. Unique ID, a string that uniquely identifies this box (e.g. "kitchen0")

2. Length, positive integer length of box in feet

3. Value, non-negative integer value of the box contents in dollars

Here are our two provided example data files:

% more kitchen5.txt % more tools7.txt
kitcheno 6 821 toolso 6 64
kitchenl 6 854 toolsl 10 766
kitchen2 7 37 tools2 6 668
kitchen3 6 639 tools3 2 15
kitchend4 5 87 tools4 1 951

tools5 5 259
tools6 3 711

Your RandomBoxes program should take four command-line arguments (in this order):

1. Box prefix, a string value that is used as the prefix of all unique box IDs. A number starting at 0 and
increment by 1 each time is appended to the prefix string to arrive at the unique box identifiers.

2. Number of boxes to generate, a positive integer specifying how many boxes to generate.

3. Maximum box length, a positive integer (denoted here maxLength) specifying the maximum length of a
box in feet. All box lengths are reported in integer units. Each generated box has a random length
drawn uniformly from the interval [1, maxLength]. That is, a box length is always at least 1 foot and can
be up to and including maxLength feet.

4. Maximum value in dollars, a non-negative integer (denoted here maxValue) specifying the maximum
value in dollars. All box values are reported in integer units. Each generated box has a random value in
[0, maxValue]. That is the box value can have a value between @ and maxValue including the endpoints.

2

Here are some example runs:

% java RandomBoxes bedroom 10 15 200 % java RandomBoxes junk 8 3 5
bedroom@ 8 26 junke 1 1
bedrooml 15 15 junkl 2 2
bedroom2 7 35 junk2 2 ©
bedroom3 12 26 junk3 1 5
bedroom4 4 40 junk4 3 2
bedroom5 2 22 junk5 3 1
bedroom6 12 99 junké 1 4
bedroom7 10 36 junk7 2 4

bedroom8 1 111
bedroom9 6 191

Part 2, MoveBoxes: This program simulates a very simplistic moving process. Boxes are loaded in the exact
order they appear in the input file. As soon as we find the next box would cause the total length of loaded
boxes to exceed the truck length, we drive a load to the our new house. So for example, for the input file
kitchen5.txt, we first load box kitcheno, then if that fits, kitcheni, then if it fits kitchen2, and so on.

An added complication is that our truck only has insurance coverage for a certain dollar value of cargo. If
the next box would cause the total value of all boxes loaded in the truck to exceed the insurance limit, we
send the truck on a roundtrip (without loading the box that would have put us over the limit).

MoveBoxes . java should take four command-line arguments (in this order):

1. Length of truck, a positive integer specifying the length of the truck in feet. NOTE: You can assume no
single box exceeds the length of the truck.

2. Insurance limit, a positive integer specifying the maximum value you can transport in the truck. NOTE:
You can assume no single box has a value exceeding the insurance limit.

3. Distance, a positive floating-point value specifying the distance in miles between your old house and
your new house. NOTE: this is the distance one-way, not round-trip!

4. Speed, a positive floating-point value specifying your average driving speed in miles per hour.

Part 2a: Your first goal should be to read in the command-line arguments and print out the informative
messages shown below. Note all floating-point values in MoveBoxes. java's output should be rounded to
two decimal places:

% java MoveBoxes 24 5000 45.5 60.0
Moving truck is 24 feet long.

Insurance limit per load is 5000 dollars.
Distance each way is 45.50 miles.

We drive 60.00 miles per hour.

Part 2b: After printing out the informative text, your program should then read in each line of box data
from standard input. A message should be printed as each box is loaded. Here is a similar run to the
previous one with differences highlighted in red:

% java MoveBoxes 24 5000 45.5 60.0 < kitchen5.txt
Moving truck is 24 feet long.
Insurance limit per load is 5000 dollars.
Distance each way is 45.50 miles.
We drive 60.00 miles per hour.

Loading kitcheno
Loading kitchenl
Loading kitchen2

At any point, if the next box would cause the loaded boxes to exceed the length or insurance limit of the
truck, you should send the truck on a roundtrip. So in the above output, the truck currently has 19 feet of
boxes worth $1712. The next box, kitchen3 is 6 feet long so would exceed the truck length of 24 feet. At
this point, you should print a message about making a trip, the length of boxes carried on this trip, the
dollar value of boxes carried on this trip, and the total elapsed driving time (all trips including this one):

% java MoveBoxes 24 5000 45.5 60.0 < kitchen5.txt
Moving truck is 24 feet long.

Insurance limit per load is 5000 dollars.
Distance each way is 45.50 miles.

We drive 60.00 miles per hour.

Loading kitcheno

Loading kitchenl

Loading kitchen2

Making trip: 19 feet, 1712 dollars
Total driving time: 1.52 hours

The truck is now empty again and the last two boxes can be loaded. So the full output would be:

% java MoveBoxes 24 5000 45.5 60.0 < kitchen5.txt
Moving truck is 24 feet long.

Insurance limit per load is 5000 dollars.
Distance each way is 45.50 miles.

We drive 60.00 miles per hour.

Loading kitcheno

Loading kitchenl

Loading kitchen2

Making trip: 19 feet, 1712 dollars
Total driving time: 1.52 hours
Loading kitchen3

Loading kitchen4

Making trip: 11 feet, 726 dollars
Total driving time: 3.03 hours

Here is another sample run, in this case we had to make several trips with a mostly unloaded truck due to a
low insurance limit and the high value of our boxes:

% java MoveBoxes 16 1000 100.0 50.0 < tools7.txt
Moving truck is 16 feet long.

Insurance limit per load is 1000 dollars.
Distance each way is 100.00 miles.

We drive 50.00 miles per hour.

Loading toolse

Loading toolsl

Making trip: 16 feet, 830 dollars
Total driving time: 4.00 hours
Loading tools2

Loading tools3

Making trip: 8 feet, 683 dollars
Total driving time: 8.00 hours
Loading tools4

Making trip: 1 feet, 951 dollars
Total driving time: 12.00 hours
Loading tools5

Loading tools6

Making trip: 8 feet, 970 dollars
Total driving time: 16.00 hours

If we were to buy higher insurance coverage, we could get this done a lot quicker:

% java MoveBoxes 40 20000 100.0 50.0 < tools7.txt
Moving truck is 40 feet long.

Insurance limit per load is 20000 dollars.
Distance each way is 100.00 miles.

We drive 50.00 miles per hour.

Loading toolse

Loading toolsl

Loading tools2

Loading tools3

Loading tools4

Loading tools5

Loading tools6

Making trip: 33 feet, 3434 dollars
Total driving time: 4.00 hours

