
Transport layer and UDP

Computer Networking: A Top Down Approach
6th edition

Jim Kurose, Keith Ross

Addison-Wesley
Some materials copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

”www.cnn.com?”

“12.3.4.15”

Overview

2

• Principles underlying transport layer

– Multiplexing/demultiplexing

– Detecting errors

– Reliable delivery

– Flow control

– Congestion control

• Major transport layer protocols:

– User Datagram Protocol (UDP)
• Simple unreliable message delivery

– Transmission Control Protocol (TCP)
• Reliable bidirectional stream of bytes

transport

application

physical

link

network

Chapter 3: Transport Layer

Goals:

• Understand
principles behind
transport layer
services:

– Multiplexing,
demultiplexing

– Reliable data transfer

– Flow control

– Congestion control

• Learn about Internet
transport layer protocols:

– UDP: connectionless
transport

– TCP: connection-oriented
reliable transport

– TCP congestion control

3

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

– Segment structure

– Reliable data transfer

– Flow control

– Connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

4

Transport services and protocols
• Provide logical communication

between app processes running
on different hosts

• Transport protocols run in end
systems

– Send side: breaks app
messages into segments,
passes to network layer

– Recv side: reassembles
segments into messages,
passes to app layer

• More than one transport
protocol available to apps

– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

5

Segments

• Segment

– Message sent from one transport entity to
another transport entity

– Term used by TCP, UDP, other Internet protocols

– aka TPDU (Transport Protocol Data Unit)

6

Internet layering model

7

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packet IP packet

frame frame frame

Transport layer challenges

• Running on best-effort network:

– Messages may be dropped

– Messages may be reordered

– Duplicate messages may be delivered

– Messages have some finite size

– Messages may arrive after long delay

• Sender must not overrun receiver

• Network may be congested

• Hosts must support multiple applications

8

Internet transport-layer protocols
• Reliable, in-order

delivery: TCP

– Congestion control

– Flow control

– Connection setup

• Unreliable, unordered
delivery: UDP

– No-frills extension of
"best-effort" IP

• Services not available:

– Delay guarantees

– Bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

9

Transport layer

• Goal: End-to-end data transfer

– Just getting to host machine isn't enough

– Deliver data from process on sending host to
correct process on receiving host

• Solution: OS demultiplexes to correct process

– Port number, an abstract locater

– OS demuxes combining with other info

10

UDP <port, host>
TCP <source port, source IP, dest port, dest IP>

Multiplexing/demultiplexing

process

socket

Use header info to deliver
received segments to correct
socket

Demultiplexing at receiver: Handle data from multiple
sockets, add transport header
(later used for demultiplexing)

Multiplexing at sender:

transport

application

physical

link

network

P2 P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

11

How demultiplexing works
• Host receives IP datagrams

– Each datagram has source
IP address, destination IP
address

– Each datagram carries one
transport-layer segment

– Each segment has source,
destination port number

• Host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data
(payload)

other header fields

TCP/UDP segment format

12

Connectionless demultiplexing

• Recall: created socket can
specify host-local port #:

 DatagramSocket mySocket1
= new DatagramSocket(12534);

• When host receives UDP
segment:

– Checks destination port #
in segment

– Directs UDP segment to
socket with that port #

IP datagrams with same
destination port #, but
different source IP
addresses and/or source
port numbers will be
directed to same socket at
destination

13

• Recall: when creating
datagram to sent into
UDP socket, must
specify:

– Destination IP

– Destination port #

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket (6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket (5775);

DatagramSocket
mySocket2 = new
DatagramSocket (9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

14

Connection-oriented demux
• TCP socket identified by

4-tuple:

– Source IP address

– Source port number

– Dest IP address

– Dest port number

• Demux: receiver uses
all four values to direct
segment to appropriate
socket

• Server host may support
many simultaneous TCP
sockets:

– Each socket identified by
its own 4-tuple

• Web servers have
different sockets for
each connecting client

– Non-persistent HTTP will
have different socket for
each request

15

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6 P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP
address B

16

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

17

Why use UDP?
• Provides:

– Lightweight communication between processes

– Avoid overhead and delays of ordered, reliable delivery

– Precise control of when data is sent
• As soon as app writes to socket, UDP packages and sends

– No delay establishing a connection

– No connection state, scales to more clients

– Small packet overhead, header only 8 bytes long

• Does not provide:

– Flow control

– Congestion control

– Retransmission on error

18

UDP checksum

Sender:
• Treat segment contents,

including header fields,
as sequence of 16-bit
integers

• Checksum: addition
(one’s complement sum)
of segment contents

• Sender puts checksum
value into UDP checksum
field

Receiver:
• Compute checksum of

received segment
• Check if computed

checksum equals checksum
field value:
– NO - error detected
– YES - no error detected.

But maybe errors
nonetheless? More later
….

Goal: detect errors (e.g. flipped bits) in transmitted
segment

19

Internet checksum: example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

20

UDP checksums

• UDP checksum

– Add up 16-bit words in one's complement

– Take one's complement of the sum

– Done on UDP header, data, IP pseudoheader

• Helps detect misdelivered packets

• Violates layers, looking into network layer

21

UDP header IP pseudoheader

Type of UDP apps, part 1/3

• Simple query protocols

– Overhead of connection establishment is overkill

– Easier to have application retransmit if needed

– e.g. DNS, UDP port 53

– e.g. DHCP, UDP port 67/68

22

”www.cnn.com?”

“12.3.4.15”

DHCPDISCOVER

“192.168.1.30”

Type of UDP apps, part 2/3

• Request/reply style interaction

– Client sends request to server

• Blocks while waiting for reply

– Server responds with reply

– Must deal with:

• Identify process that can handle
request

• Possible loss of request or reply

• Correlate request with reply

23

Request/reply example

• Remote Procedure Call (RPC)

– Request/reply paradigm over UDP

– Allow programs to call procedures located on a
remote host

– Invisible to the application programmer

• Client code blocks while request made and response
waited for from remote host

– Object-oriented languages:

• Remote Method Invocation(RMI), e.g. Java RMI

24

Type of UDP apps, part 3/3

• Multimedia streaming

– e.g. Voice over IP, video conferencing

– Time is of the essence

• By time packet is retransmitted, it's too late!

• Interactive applications:
– Human-to-human interaction

– e.g. conference, first-person shooters

• Streaming applications:
– Computer-to-human interaction

– e.g. Netflix, Spotify

25

Summary

• Transport layer

– Providing end-to-end process communication

• Port numbers allow multiple processes per host

– Provide reliable transport on best-effort network

• User Datagram Protocol (UDP)

– Lightweight protocol running on top of IP

– Three typical classes of applications:

• Simple queries (DNS, DHCP)

• Request/reply semantics (RPC)

• Real-time data (Skype)

26

