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Overview 
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• Principles underlying transport layer 

– Multiplexing/demultiplexing 

– Detecting errors 

– Reliable delivery 

– Flow control 

– Congestion control 

• Major transport layer protocols: 

– User Datagram Protocol (UDP) 
• Simple unreliable message delivery 

– Transmission Control Protocol (TCP) 
• Reliable bidirectional stream of bytes 
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Chapter 3: Transport Layer 

Goals: 

• Understand 
principles behind 
transport layer 
services: 

– Multiplexing, 
demultiplexing 

– Reliable data transfer 

– Flow control 

– Congestion control 

 

• Learn about Internet 
transport layer protocols: 

– UDP: connectionless 
transport 

– TCP: connection-oriented 
reliable transport 

– TCP congestion control 
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Chapter 3 outline 

3.1 Transport-layer 
services 

3.2 Multiplexing and 
demultiplexing 

3.3 Connectionless 
transport: UDP 

3.4 Principles of reliable 
data transfer 

3.5 Connection-oriented 
transport: TCP 

– Segment structure 

– Reliable data transfer 

– Flow control 

– Connection management 

3.6 Principles of congestion 
control 

3.7 TCP congestion control 
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Transport services and protocols 
• Provide logical communication 

between app processes running 
on different hosts 

• Transport protocols run in end 
systems  

– Send side: breaks app 
messages into segments, 
passes to  network layer 

– Recv side: reassembles 
segments into messages, 
passes to app layer 

• More than one transport 
protocol available to apps 

– Internet: TCP and UDP 
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Segments 

• Segment 

– Message sent from one transport entity to 
another transport entity 

– Term used by TCP, UDP, other Internet protocols 

– aka TPDU (Transport Protocol Data Unit) 
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Internet layering model 
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Transport layer challenges 

• Running on best-effort network: 

– Messages may be dropped 

– Messages may be reordered 

– Duplicate messages may be delivered 

– Messages have some finite size 

– Messages may arrive after long delay 

• Sender must not overrun receiver 

• Network may be congested 

• Hosts must support multiple applications 
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Internet transport-layer protocols 
• Reliable, in-order 

delivery: TCP 

– Congestion control  

– Flow control 

– Connection setup 

• Unreliable, unordered 
delivery: UDP 

– No-frills extension of 
"best-effort" IP 

• Services not available:  

– Delay guarantees 

– Bandwidth guarantees 
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Transport layer 

• Goal: End-to-end data transfer 

– Just getting to host machine isn't enough 

– Deliver data from process on sending host to 
correct process on receiving host 

• Solution: OS demultiplexes to correct process 

– Port number, an abstract locater 

– OS demuxes combining with other info 
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UDP  <port, host> 
TCP   <source port, source IP, dest port, dest IP> 



Multiplexing/demultiplexing 

process 

socket 

Use header info to deliver 
received segments to correct  
socket 

Demultiplexing at receiver: Handle data from multiple 
sockets, add transport header 
(later used for demultiplexing) 

Multiplexing at sender: 
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How demultiplexing works 
• Host receives IP datagrams 

– Each datagram has source 
IP address, destination IP 
address 

– Each datagram carries one 
transport-layer segment 

– Each segment has source, 
destination port number  

• Host uses IP addresses & 
port numbers to direct 
segment to appropriate 
socket 

source port # dest port # 

32 bits 

application 
data  
(payload) 

other header fields 

TCP/UDP segment format 
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Connectionless demultiplexing 

• Recall: created socket can 
specify host-local port #: 
 

  DatagramSocket mySocket1        
= new DatagramSocket(12534); 

  

 

• When host receives UDP 
segment: 

– Checks destination port # 
in segment 

– Directs UDP segment to 
socket with that port # 

IP datagrams with same 
destination port #, but 
different source IP 
addresses and/or source 
port numbers will be 
directed to same socket at 
destination 
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• Recall: when creating 
datagram to sent into 
UDP socket, must 
specify: 

– Destination IP 

– Destination port # 



Connectionless demux: example 

DatagramSocket 
serverSocket = new 
DatagramSocket (6428); 
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DatagramSocket 
mySocket1 = new 
DatagramSocket (5775); 

DatagramSocket 
mySocket2 = new 
DatagramSocket (9157); 

 

source port: 9157 
dest port: 6428 

source port: 6428 
dest port: 9157 

source port: ? 
dest port: ? 

source port: ? 
dest port: ? 
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Connection-oriented demux 
• TCP socket identified by 

4-tuple:  

– Source IP address 

– Source port number 

– Dest IP address 

– Dest port number 

• Demux: receiver uses 
all four values to direct 
segment to appropriate 
socket 

• Server host may support 
many simultaneous TCP 
sockets: 

– Each socket identified by 
its own 4-tuple 

• Web servers have 
different sockets for 
each connecting client 

– Non-persistent HTTP will 
have different socket for 
each request 
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Connection-oriented demux: example 
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source IP,port: A,9157 
dest IP, port: B,80 

source IP,port: B,80 
dest IP,port: A,9157 

host: IP 
address A 

host: IP 
address C 

network 

P6 P5 
P3 

source IP,port: C,5775 
dest IP,port: B,80 

source IP,port: C,9157 
dest IP,port: B,80 

Three segments, all destined to IP address: B,  
dest port: 80 are demultiplexed to different sockets 

server: IP 
address B 
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Connection-oriented demux: example 
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source IP,port: A,9157 
dest IP, port: B,80 

source IP,port: B,80 
dest IP,port: A,9157 

host: IP 
address A 

host: IP 
address C 

server: IP 
address B 

network 

P3 

source IP,port: C,5775 
dest IP,port: B,80 

source IP,port: C,9157 
dest IP,port: B,80 

P4 

threaded server 

17 



Why use UDP? 
• Provides: 

– Lightweight communication between processes 

– Avoid overhead and delays of ordered, reliable delivery 

– Precise control of when data is sent 
• As soon as app writes to socket, UDP packages and sends 

– No delay establishing a connection 

– No connection state, scales to more clients 

– Small packet overhead, header only 8 bytes long 

• Does not provide: 

– Flow control 

– Congestion control 

– Retransmission on error 
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UDP checksum 

Sender: 
• Treat segment contents, 

including header fields,  
as sequence of 16-bit 
integers 

• Checksum: addition 
(one’s complement sum) 
of segment contents 

• Sender puts checksum 
value into UDP checksum 
field 

 

 

Receiver: 
• Compute checksum of 

received segment 
• Check if computed 

checksum equals checksum 
field value: 
– NO - error detected 
– YES - no error detected. 

But maybe errors 
nonetheless? More later 
…. 

Goal: detect errors (e.g. flipped bits) in transmitted 
segment 
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Internet checksum: example 

example: add two 16-bit integers 

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0 
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0 
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1 

wraparound 

sum 

checksum 

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result 
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UDP checksums 

• UDP checksum 

– Add up 16-bit words in one's complement 

– Take one's complement of the sum 

– Done on UDP header, data, IP pseudoheader 

• Helps detect misdelivered packets 

• Violates layers, looking into network layer 
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Type of UDP apps, part 1/3 

• Simple query protocols  

– Overhead of connection establishment is overkill 

– Easier to have application retransmit if needed 

– e.g. DNS, UDP port 53 

 

 

 

– e.g. DHCP, UDP port 67/68 
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Type of UDP apps, part 2/3 

• Request/reply style interaction 

– Client sends request to server 

• Blocks while waiting for reply 

– Server responds with reply 

– Must deal with: 

• Identify process that can handle 
request 

• Possible loss of request or reply 

• Correlate request with reply 
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Request/reply example 

• Remote Procedure Call (RPC) 

– Request/reply paradigm over UDP 

– Allow programs to call procedures located on a 
remote host 

– Invisible to the application programmer 

• Client code blocks while request made and response 
waited for from remote host 

– Object-oriented languages: 

•  Remote Method Invocation(RMI), e.g. Java RMI 
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Type of UDP apps, part 3/3 

• Multimedia streaming 

– e.g. Voice over IP, video conferencing 

– Time is of the essence 

• By time packet is retransmitted, it's too late! 

• Interactive applications: 
– Human-to-human interaction 

– e.g. conference, first-person shooters 

• Streaming applications: 
– Computer-to-human interaction  

– e.g. Netflix, Spotify 
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Summary 

• Transport layer 

– Providing end-to-end process communication 

• Port numbers allow multiple processes per host 

– Provide reliable transport on best-effort network 

• User Datagram Protocol (UDP) 

– Lightweight protocol running on top of IP 

– Three typical classes of applications: 

• Simple queries (DNS, DHCP) 

• Request/reply semantics (RPC) 

• Real-time data (Skype) 
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