Transport layer and UDP

Vi

TN

Computer Networking: A Top Down Approach

6t edition
Jim Kurose, Keith Ross Some materials copyright 1996-2012
Addison-Wesley J.F Kurose and K.W. Ross, All Rights Reserved

Overview

* Principles underlying transport layer

— Multiplexing/demultiplexing application
— Detecting errors transport
— Reliable delivery network

— Flow control link

— Congestion control physical

* Major transport layer protocols:
— User Datagram Protocol (UDP)
e Simple unreliable message delivery

— Transmission Control Protocol (TCP)

» Reliable bidirectional stream of bytes

Chapter 3: Transport Layer

Goals:

* Understand
principles behind
transport layer — UDP: connectionless

services: transport
— Multiplexing, — TCP: connection-oriented

demultiplexing reliable transport

— Reliable data transfer

e Learn about Internet
transport layer protocols:

— TCP congestion control

— Flow control
— Congestion control

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
— Segment structure
— Reliable data transfer
— Flow control
— Connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

Transport services and protocols

* Provide logical communication
between app processes running
. . transport
on different hosts | .

data link
physical
N

* Transport protocols run in end
systems

— Send side: breaks app
messages into segments,
passes to network layer

— Recv side: reassembles
segments into messages,
passes to app layer

* More than one transport
protocol available to apps

— Internet: TCP and UDP

* Segment

Segments

— Message sent from one transport entity to

another transport entity

— Term used by TCP, UDP, other Internet protocols
— aka TPDU (Transport Protocol Data Unit)

Frame Packet TPDU
header header header
/ / e
4 A —

e

TPDU payload

[

Y

Packet payload

Frame payload

Y

Internet layering model

host host

HTTP message

IP packet IP packet
D D T

Ethernet SONET
interface interface

SONET Ethernet Ethernet
interface interface interface

Ethernet

interface

Transport layer challenges

Running on best-effort network:

— Messages may be dropped

— Messages may be reordered

— Duplicate messages may be delivered
— Messages have some finite size

— Messages may arrive after long delay

Sender must not overrun receiver
Network may be congested
Hosts must support multiple applications

Internet transport-layer protocols

Reliable, in-order
delivery: TCP

— Congestion control
— Flow control

— Connection setup

Unreliable, unordered
delivery: UDP

— No-frills extension of
"best-effort" IP

Services not available:
— Delay guarantees
— Bandwidth guarantees

L

g

SE physical

application
- a PO
netwo woReroe
data lin
network
networ data link
data link NOWMysical |
physical 2
N s
O
S phy
- f ! 0O
< -g network
A data link
% g physical A
[network
data link
i=ysical
network
data link
o/ hysical
-g P y‘ network
é data link
— physical

[Vf \:V ! %

apPagation

network
data link
physical

Transport layer

* Goal: End-to-end data transfer
— Just getting to host machine isn't enough

— Deliver data from process on sending host to
correct process on receiving host

* Solution: OS demultiplexes to correct process
— Port number, an abstract locater
— OS demuxes combining with other info

UDP <port, host>
TCP <source port, source IP, dest port, dest IP>

10

Multiplexing/demultiplexing

- Multiplexing at sender:
Handle data from multiple

sockets, add transport header
(later used for demultiplexing)

application

A
transpol

network
link
physical

application

tra D

netwol

_ Demultiplexing at receiver: .

Use header info to deliver
received segments to correct
socket

link

physicq|

application I:I socket
Q process
] |

transpgft

network

link p
physicd|

11

* Host receives IP datagrams

How demultiplexing works

— Each datagram has source
|P address, destination IP
address

— Each datagram carries one
transport-layer segment

— Each segment has source,
destination port number
Host uses IP addresses &
port numbers to direct
segment to appropriate
socket

< 32 bits —>

source port # dest port #

other header fields

application
data
(payload)

TCP/UDP segment format

12

Connectionless demultiplexing

e Recall: created socket can * Recall: when creating
specify host-local port #: datagram to sent into

DatagramSocket mySocketl UDP.SOCketr must
= new DatagramSocket(12534); speC|fy:

— Destination IP
— Destination port #

* When host receives UDP IP datagrams with same

segment: destination port #, but
different source IP
addresses and/or source
port numbers will be

— Directs UDP segment to directed to same socket at

socket with that port # destination

— Checks destination port # -
in segment

Connectionless demux: example

DatagramSocket
DatagramSocket serversocket = new DatagramSocket
mySocket2 = new DatagramSocket (6428);

mySocketl = new

DatagramSocket (9157); DatagramSocket (5775);

application

application

application

ul 4 lm
transpor
network
link
(physicq| \'

source port: 6428 source port: ?
. dest port: 9157] dest port: ?

> e ¥

source port: 9157 source port: ?

dest port: 6428 dest port: ?

14

Connection-oriented demux

* TCP socket identified by < Server host may support

4-tuple: many simultaneous TCP
— Source IP address sockets:
— Source port number — Each socket identified by
— Dest IP address its own 4-tuple
— Dest port number Web servers have

e Demux: receiver uses different sockets for
all four values to direct each connecting client
segment to appropriate — Non-persistent HTTP will
socket have different socket for

each request

Connection-oriented demux: example

g

host: IP

application

netwo r|<

application
application
Lol By
24 e tr511$p0'
transpclrt

—l@—@
trdnsport

link

Nne

twork

physica

lin

k

address A

source IP,port: B,80
dest IP,port: A,9157

source IP,port: A,9157
dest IP, port: B,80

p

nysical

server: IP
address B

source IP,port: C,5775

dest IP,port: B,80_

source IP,port: C,9157

dest IP,port: B,80

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

=

host: IP
address C

Connection-oriented demux: example

g

host: IP
address A

application

al 4 |

transpclrt

networ|<
link
physica

threaded server

application

application

e
transport

source IP,port: B,80
dest IP,port: A,9157

ndtwork
lirfk
erver: IP ppysical D
ddress B i
e host: IP
— source IP,port: C,5775 address C

source IP,port: A,9157

dest IP, port: B,80

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

17

Why use UDP?

* Provides:
— Lightweight communication between processes
— Avoid overhead and delays of ordered, reliable delivery
— Precise control of when data is sent

* As soon as app writes to socket, UDP packages and sends
— No delay establishing a connection
— No connection state, scales to more clients
— Small packet overhead, header only 8 bytes long

* Does not provide:
— Flow control

— Congestion control
— Retransmission on error

UDP checksum

Goal: detect errors (e.g. flipped bits) in transmitted
segment

Sender: Receiver:

* Treat segment contents, e Compute checksum of
including header fields, received segment

as sequence of 16-bit
q Check if computed

integers
e Checksum: addition checksum equals checksum
' field value:

(one’s complement sum)
— NO - error detected

of segment contents
— YES - no error detected.
* Sender puts checksum
value into UDP checksum But maybe errors

field nonetheless? More later

Internet checksum: example

example: add two 16-bit integers

6-
11100110011 00110
1101010101 O01O01O01

wraparound@1011101110111011

sum

1011101110111 100
checksum 0100010001 0O0O0OO011

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

e UDP checksum

UDP checksums

— Add up 16-bit words in one's complement

— Take one's complement of the sum

— Done on UDP header, data, IP pseudoheader

* Helps detect misdelivered packets

 Violates layers, looking into network layer

16

31

SrcPort

Length

DstPort
Checksum

Data

UDP header

32 Bits

Source

address

Destina

tion address

pgooooooo

Prateeol = 17

UDP lemgth

IP pseudoheader

21

Type of UDP apps, part 1/3

* Simple query protocols
— QOverhead of connection establishment is overkill

— Easier to have application retransmit if needed
— e.g. DNS, UDP port 53

B cnn oo
L "WWw.cnn.com?"” :
W)\(/ E!

C:?%%giﬁk‘~iif;f'4'151_,,———”
— e.g. DHCP, UDP port 67/68

DHCPDISCOVER
. 1k
]
UJ“I\‘F\\\ligi;}GS.1232:——_,,—

22

Type of UDP apps, part 2/3

* Request/reply style interaction

— Client sends request to server
* Blocks while waiting for reply

Client Server
— Server responds with reply - -
est
— Must deal with: -]Commg
* |dentify process that can handle Rep!

req Ue5t Blocked

* Possible loss of request or reply
* Correlate request with reply

Request/reply example

 Remote Procedure Call (RPC)

— Request/reply paradigm over UDP

— Allow programs to call procedures located on a
remote host

— Invisible to the application programmer

* Client code blocks while request made and response
waited for from remote host

— Object-oriented languages:
 Remote Method Invocation(RMI), e.g. Java RMI

Type of UDP apps, part 3/3

 Multimedia streaming
— e.g. Voice over IP, video conferencing

— Time is of the essence
* By time packet is retransmitted, it's too late!
* |Interactive applications:

— Human-to-human interaction
— e.g. conference, first-person shooters
e Streaming applications:

— Computer-to-human interaction
— e.g. Netflix, Spotify

25

Summary

* Transport layer

— Providing end-to-end process communication
* Port numbers allow multiple processes per host

— Provide reliable transport on best-effort network

e User Datagram Protocol (UDP)
— Lightweight protocol running on top of IP

— Three typical classes of applications:
e Simple queries (DNS, DHCP)
* Request/reply semantics (RPC)
* Real-time data (Skype)

