
Transmission Control Protocol (TCP)

Computer Networking: A Top Down Approach
6th edition

Jim Kurose, Keith Ross

Addison-Wesley
Some materials copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

window size
 N

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

– Segment structure

– Reliable data transfer

– Flow control

– Connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

2

Transmission Control Protocol (TCP)

• Stream of bytes

– Send and receive streams, not messages

• Reliable, in-order delivery

– Checksums to detect corrupted data

– Sequence numbers to detect losses and reorder

– ACKs and retransmission for reliability

• Connection-oriented

– Explicit setup and teardown of connections

– Full duplex, two streams one in each direction

• Flow control

– Prevent overrunning receiver's buffer

3

Transmission Control Protocol (TCP)

• Congestion control

– Adapt for the greater good

• History:
– RFC 793, TCP formally defined, September 1981

– RFC 1122, clarification and bug fixes

– RFC 1323, high performance extensions

– RFC 2018, selective acknowledgements

– RFC 2581, congestion control

– RFC 2873, quality of service

– RFC 2988, improved retransmission timers

– RFC 3168, congestion notification

– …

– RFC 4614, guide to TCP RFCs

4

TCP service model

• Uses port number abstraction, same as UDP

• Demultiplexing key:

– <source IP, source port, dest. IP, dest. port>

• Byte steam, no message boundaries

– No way to know what size chunks given to SEND
when other side does RECEIVE

5

Four 512-byte segments sent as separate IP
datagrams.

2048 bytes of data delivery
to application in single

READ call

TCP "stream of bytes" service

6

Host A

Host B

Every byte on a
TCP connection
has a 32-bit
sequence
number

Emulating a byte stream

7

Host A

Host B

TCP segment

TCP segment

TCP segment sent when:
1) Segment full (hits the max

segment size)
2) Hits a timeout value
3) Pushed by application

8

TCP buffering

• Data sent by socket gets put in TCP send buffer
– RFC 793: "send that data in segments at its own convenience"

– Send side can request PUSH by sitting bit in TCP header

Determining MSS
• Maximum Segment Size (MSS)

– Default size:
• Nodes must support min IP MTU of 576 bytes

• 536 bytes = 576 – 20 (IP header) – 20 (TCP header)

• Usually doesn't fragment, unless IP/TCP options used

– Nodes specify MSS during connection setup
• Done via MSS option field of TCP segment header

• Could be different in each direction

10

IP Hdr
TCP Hdr TCP Data (segment)

Source port # Dest port #

32 bits

Application
data
(variable length)

Sequence number

Acknowledgement number

Receive window

Urg data pointer Checksum

F S R P A U
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
receiver is
willing
to accept

Counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP segment structure

11

Sequence numbers:

– Byte stream number of first
byte in segment's data

Acknowledgements:

– Sequence # of next byte
expected from other side

– Cumulative ACK
• If segment(s) out of order, ACK

last next expect in-order byte

Q: How does receiver handle
out-of-order segments?

A: TCP spec doesn't say, up to
implementation

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

Incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
"in-flight"

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

Outgoing segment from sender

TCP sequence numbers, ACKs

12

User
types

'C'

Host ACKs
receipt

of echoed
'C'

Host ACKs receipt of
'C', echoes back 'C'
Piggybacked ACK

Simple telnet scenario

Host B Host A

Seq=42, ACK=79, data = 'C'

Seq=79, ACK=43, data = 'C'

Seq=43, ACK=80

TCP sequence numbers, ACKs

13

Q: How to set TCP
timeout value?

 Longer than RTT

 But RTT varies

 Too short: premature
timeout, unnecessary
retransmissions

 Too long: slow
reaction to segment
loss

Q: How to estimate
RTT?

 SampleRTT: Measured time
from segment transmission
until ACK receipt

– Ignore retransmissions

– Will vary, want estimated
RTT smoother

– Average several recent
measurements, not just
current sample RTT

TCP RTT, timeout

14

Adaptive timeout
• Don't update SampleRTT on retransmitted frames

– Karn/Partidge algorithm, 1987

– Ignore RTT's of packet that were retransmitted

– Double timeout value on retransmission
• Exponential backoff

15

Transport Layer

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 Influence of past sample decreases exponentially fast

 Typical value:  = 0.125

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

TCP RTT, timeout

16

• Timeout interval: EstimatedRTT plus "safety margin"
– Large variation in EstimatedRTT → larger safety margin

• Estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1 - ) * DevRTT +
  * |SampleRTT - EstimatedRTT|

(typically,  = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT safety margin

TCP RTT, timeout

17

• TCP creates reliable
service on top of IP's
unreliable service

– Pipelined segments

– Cumulative ACKs

– Single retransmission
timer

• Retransmissions
triggered by:

– Timeout events

– Duplicate ACKs

Let's initially consider
simplified TCP sender:

– Ignore duplicate ACKs

– Ignore flow control

– Ignore congestion control

TCP reliable data transfer

18

Data received from app:

Create segment with
sequence #

Sequence # is byte-
stream number of first
data byte in segment

Start timer if not
already running

 Think of timer as for
oldest unACKed segment

 Expiration interval:
TimeOutInterval

Timeout:

Retransmit segment
that caused timeout

Restart timer

 ACK received:

If ACK acknowledges
previously unACKed
segments

 Update what is known
to be ACKed

 Start timer if there are
still unACKed segments

TCP sender events

19

wait

for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq # = NextSeqNum

pass segment to IP (send it)

NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

 start timer

data received from application above

retransmit not-yet-ACKed
segment with smallest seq #
start timer

timeout

if (y > SendBase) {
 SendBase = y
 /* SendBase–1: last cumulatively ACKed byte */
 if (there are currently not-yet-ACKed segments)
 start timer
 else
 stop timer
}

ACK received, with ACK field value y

TCP sender (simplified)

20

SendBase=92

Lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X ti
m

eo
u

t

ACK=100

Premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

eo
u

t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

TCP: retransmission scenarios

21

X

Cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

eo
u

t

Seq=100, 20 bytes of data

ACK=120

TCP: retransmission scenarios

22

TCP ACK generation [RFC 1122, RFC 2581]

Event at receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq #
Gap detected

Arrival of segment that
partially or completely fills gap

TCP receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq # of next expected byte

Immediately send ACK, provided that
segment starts at lower end of gap

23

 Time-out period often
relatively long:

 Long delay before
resending lost packet

 Detect lost segments
via duplicate ACKs

 Sender often sends
many segments back-
to-back

 If segment is lost,
there will likely be
many duplicate ACKs

If sender receives 3

ACKs for same data,

resend unACKed

segment with smallest

sequence #

 Likely that unACKed

segment lost, so don't

wait for timeout

TCP fast retransmit

24

TCP fast transmit

X

Fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

ti
m

eo
u

t

ACK=100

ACK=100

ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

25

TCP fast retransmit

Staying Alive

• TCP keep-alive timer

– If connection is idle > timeout, send a frame with
no data to see if other side still alive

– Checking for dead peer

– Prevent disconnection due to inactivity

• NAT box might drop your state if you don't
communicate once in awhile

26

Summary

• Transmission Control Protocol (TCP)

– Provides reliable byte-stream

– Sequence number

• Number of first byte in segment's data

– Acknowledgement number

• Next expected byte from other side

– Estimating timeout value

– Reliable transport in TCP

– Fast transmit

• Avoid waiting for timeout

• Happens on triple duplicate ACK

27

