Transmission Control Protocol (TCP)

RTT (millisecon
N

source port # dest port #

sequence number

acknowledgement number

| | rwnd e SampleRTT —=— Estimated RTT

checksum urg pointer

window size

la N |
[”

Computer Networking: A Top Down Approach
6t edition @
Jim Kurose, Keith Ross Some materials copyright 1996-2012 £

Addison-Wesley J.F Kurose and K.W. Ross, All Rights Reserved

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
— Segment structure
— Reliable data transfer
— Flow control
— Connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

Transmission Control Protocol (TCP)

Stream of bytes

— Send and receive streams, not messages

Reliable, in-order delivery

— Checksums to detect corrupted data

— Sequence numbers to detect losses and reorder
— ACKs and retransmission for reliability
Connection-oriented

— Explicit setup and teardown of connections

— Full duplex, two streams one in each direction
Flow control

— Prevent overrunning receiver's buffer

Transmission Control Protocol (TCP)

e Congestion control
— Adapt for the greater good

* History:
— RFC 793, TCP formally defined, September 1981
— RFC 1122, clarification and bug fixes
— RFC 1323, high performance extensions
— RFC 2018, selective acknowledgements
— RFC 2581, congestion control
— RFC 2873, quality of service
— RFC 2988, improved retransmission timers
— RFC 3168, congestion notification

— RFC 4614, guide to TCP RFCs

TCP service model

e Uses port number abstraction, same as UDP

 Demultiplexing key:

— <source IP, source port, dest. IP, dest. port>

* Byte steam, no message boundaries

— No way to know what size chunks given to SEND

when other side does RECEIVE

IP header TCP header
\ /

A

B

Four 512-byte segments sent as separate IP

C

datagrams.

D

A B C D

2048 bytes of data delivery
to application in single
READ call

TCP "stream of bytes" service

Host A o
oo}
EZ%Z% E
Every byte on a
TCP connection
has a 32-bit
sequence
number
Host B e | | g

Emulating a byte stream

1) Segment full (hits the max

Host A
wl | | oo v
BHEER B
S| —| Nof L &
=)
TCP segment | € TCP segment sent when:
segment size)
2) Hits a timeout value
3) Pushed by application
TCP segment
Host B [oedde] 11
BHEER B
S| | bof L &
S

TCP buffering

Process Process
writes data readst data

Socket

TCP | Segment —= | Segment > TCP
d receive
bsjf'}e" buffer

Figure 3.28 ¢ TCP send and receive buffers

e Data sent by socket gets put in TCP send buffer
— RFC 793: "send that data in segments at its own convenience"
— Send side can request PUSH by sitting bit in TCP header

Determining MSS

e Maximum Segment Size (MSS)

— Default size:

* Nodes must support min IP MTU of 576 bytes
e 536 bytes =576 —20 (IP header) — 20 (TCP header)

* Usually doesn't fragment, unless IP/TCP options used

— Nodes specify MSS during connection setup
* Done via MSS option field of TCP segment header

 Could be different in each direction

TCP Data (segment)

TCP Hdr

IP Hdr

TCP segment structure

32 bits

A

v

URG: urgent data
(generally not used)\ Source port # Dest port #

Sequence number

Counting

by bytes

of data

(not segments!)

ACK: ACK # \\\
valid \\}sk\nowledgement number

head [no . .
PSH: push data now len lus AIEJB S|F| Receive window

(generally not used) —] C am Urg data pointer # bV'FeS -
— receiver is
RST, SYN, FIN:— | Optjens (variable length) willing

connection estab to accept
(setup, teardown

commands) Application

Internet/ data
checksum (variable length)

(asin UDP)

TCP sequence numbers, ACKs

Seguence numbers:

— Byte stream number of first
byte in segment's data

Acknowledgements:

— Sequence # of next byte
expected from other side

— Cumulative ACK

* If segment(s) out of order, ACK
last next expect in-order byte

Q: How does receiver handle
out-of-order segments?

A: TCP spec doesn't say, up to
implementation

Outgoing segment from sender

source port #

sequence number ‘

acknowledgement number

dest port #

rwnd

checksum

urg pointer

window sjz
N

sendersequencernunberspace

sent
ACKed

sent not-
yet ACKed
"in-flight"

usable
but not
yet sent

Incoming segment to sender

not
usable

source port #

dest port #

sequence number

o acknowledgement number

A

rwnd

checksum

urg pointer

12

TCP sequence numbers, ACKs

Host A Host B
- v
User “’f
types

'C' Seq=42, ACK=79, data ='C'
Host ACKs receipt of
4”’,,,~' 'C', echoes back 'C'
Seq=79, ACK=43, data = 'C’ Piggybacked ACK

Host ACKs /

receipt
of echoed
pe \Seq=43, ACK=80

\

Simple telnet scenario

13

TCP RTT, timeout

Q: How to set TCP Q: How to estimate
timeout value? RTT?
< Longer than RTT <+ SampleRTT: Measured time

from segment transmission
until ACK receipt

= But RTT varies

< Too short: premature

. — Ignore retransmissions
timeout, unnecessary

— Will vary, want estimated

retransmissions RTT smoother
“ Too long: slow — Average several recent
reaction to segment measurements, not just

loss current sample RTT

Adaptive timeout

* Don't update SampleRTT on retransmitted frames
— Karn/Partidge algorithm, 1987
— Ignore RTT's of packet that were retransmitted
— Double timeout value on retransmission

* Exponential backoff

Sender Receiver Sender Receiver

SampleRTT

SampleRTT

15

TCP RTT, timeout
EstimatedRTT = (1-a)*EstimatedRTT + oa*SampleRTT

+ Exponential weighted moving average
+ Influence of past sample decreases exponentially fast
« Typical value: oo = 0.125

350 +

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
/U? 300 1
o
-
3 \ I
2 1 T 1 fl
.g
I: 200
o
¢ sampleRTT
150
EstimatedRTT
100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds)

TCP RTT, timeout

 Timeout interval: EstimatedRTT plus "safety margin"
— Large variation in EstimatedRTT - larger safety margin

e Estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1 - B) * DevRTT +
B * |SampleRTT - EstimatedRTT|

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT safety margin

TCP reliable data transfer

e TCP creates reliable

service on top of IP's
unreliable service

— Pipelined segments
— Cumulative ACKs

— Single retransmission
timer

Retransmissions
triggered by:

— Timeout events
— Duplicate ACKs

Let's initially consider
simplified TCP sender:

— lgnore duplicate ACKs

— lgnore flow control

— lgnore congestion control

TCP sender events

Data received from app:

+** Create segment with
sequence #

s*Sequence # is byte-
stream number of first
data byte in segment

s Start timer if not
already running

* Think of timer as for
oldest unACKed segment

= Expiration interval:
TimeOutinterval

Timeout:

¢ Retransmit segment
that caused timeout

** Restart timer

ACK received:

s If ACK acknowledges
previously unACKed
segments

= Update what is known
to be ACKed

= Start timer if there are
still unACKed segments

TCP sender (simplified)

data received from application above

create segment, seq # = NextSegNum
pass segment to IP (send it)
-~ NextSegNum = NextSegNum + length(data)

A e if (timer currently not running)
NextSegNum = InitialSegNum start timer
SendBase = InitialSegNum

timeout

<:::::/) segment with smallest seq #

retransmit not-yet-ACKed
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
/* SendBase-1: last cumulatively ACKed byte */
if (there are currently not-yet-ACKed segments)
start timer
else
stop timer

Host A

4

l—— timeout —>

TCP: retransmission scenarios

Host B

v

\

Seq=92, 8 bytes of data
ACK=100

X

Seq=92, 8 bytes of data

\
/
ACK=100

—

Lost ACK scenario

Host A
g

SendBase=92

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of data

ACK=100
ACK=120

l—— timeout —>

Seq=92, 8

bytes of data -~

SendBase=100

SendBase=120

\

ACK=120

\

SendBase=120

Premature timeout

Host B

E

21

TCP: retransmission scenarios

Host A Host B
, ‘-; -

Seq=92, 8 bytes of data

Seq=100, 20 bytes o@ta<

ACK=100
X«

/i

ACK=120

l—— timeout

Seq=120, 15 bytes of data

\.L

Cumulative ACK

22

TCP ACK generation [RFC 1122, RFC 2581]

Event at receiver

TCP receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq #
Gap detected

Immediately send duplicate ACK,
indicating seq # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediately send ACK, provided that
segment starts at lower end of gap

TCP fast transmit

< Time-out period often
relatively long:

= Long delay before — TCP fast retransmit ——
< Detect lost segments ACKs for same data,
via duplicate ACKs resend unACKed
segment with smallest
= Sender often sends
sequence #
many segments back- _
back = |ikely that unACKed
to-bac segment lost, so don't
" |f segment is lost, wait for timeout

there will likely be
many duplicate ACKs

TCP fast retransmit

Host A Host B

[Seq=92, 8 bytes of data

Seq=100, M
\X

L,ACK=100
ACK=100

timeout

ACK=100

el
ACK=100

o
Seq=100, 20 bytes of data

\.

v v

A 4

Fast retransmit after sender
receipt of triple duplicate ACK

Staying Alive

* TCP keep-alive timer

— If connection is idle > timeout, send a frame with
no data to see if other side still alive

— Checking for dead peer

— Prevent disconnection due to inactivity

* NAT box might drop your state if you don't
communicate once in awhile

Summary

* Transmission Control Protocol (TCP)
— Provides reliable byte-stream

— Sequence number
 Number of first byte in segment's data

— Acknowledgement number
* Next expected byte from other side

— Estimating timeout value
— Reliable transport in TCP
— Fast transmit

* Avoid waiting for timeout
* Happens on triple duplicate ACK

