
TCP flow control and connection setup 

Computer Networking: A Top Down Approach  
6th edition  

Jim Kurose, Keith Ross 

Addison-Wesley 
Some materials copyright 1996-2012 

J.F Kurose and K.W. Ross, All Rights Reserved 

Let's talk 

OK 
ESTAB 

ESTAB 



Chapter 3 outline 

3.1 Transport-layer 
services 

3.2 Multiplexing and 
demultiplexing 

3.3 Connectionless 
transport: UDP 

3.4 Principles of reliable 
data transfer 

3.5 Connection-oriented 
transport: TCP 

– Segment structure 

– Reliable data transfer 

– Flow control 

– Connection management 

3.6 Principles of congestion 
control 

3.7 TCP congestion control 

2 



application 
process 

TCP socket 
receiver buffers 

TCP 
code 

IP 
code 

application 

OS 

Receiver protocol stack 

Application may  
remove data from  

TCP socket buffers ….  

… slower than TCP  
receiver is 
delivering 

(sender is sending) 

from sender 

Receiver controls sender, so sender 
won't overflow receiver's buffer by 
transmitting too much, too fast 

Flow control 

TCP flow control 



buffered data 

free buffer space rwnd 

RcvBuffer 

TCP segment payloads 

To application process 

• Receiver advertises free 
buffer space by including 
rwnd value in TCP header 
– RcvBuffer size set via 

socket options (typical default 
is 4096 bytes) 

– Many operating systems 
autoadjust RcvBuffer 

• Sender limits amount of 
unACKed in-flight data to 
receiver's rwnd value  

• Guarantees receive buffer 
will not overflow 

Receiver-side buffering 

TCP flow control 
Source port # Dest port # 

32 bits 

Application 
data  
(variable length) 

Sequence number 

Acknowledgement number 

Receive window 

Urg data pointer Checksum 

not 
used 

Options (variable length) 



TCP sliding window 

5 



TCP sliding window 
• Windows size = 0 

– Bytes up to an including ACK # - 1 have been received 

– Receiver has not consumed data so don't send more 

– When ready, receiver issues same ACK # and non-zero 
window size 

– Provides the flow-control in TCP 

• Sender can still send: 

– Urgent requests (e.g. kill the process) 

– Periodic window probe frames, see if window has opened 
• Prevents deadlock should the receiver's windows update get lost 

• Persistence timer 

 

 
 6 

http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/flow/FlowControl.htm 

http://www.ccs-labs.org/teaching/rn-2012s/animations/flow/index.htm 

http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/flow/FlowControl.htm
http://www.ccs-labs.org/teaching/rn-2012s/animations/flow/index.htm
http://www.ccs-labs.org/teaching/rn-2012s/animations/flow/index.htm
http://www.ccs-labs.org/teaching/rn-2012s/animations/flow/index.htm
http://www.ccs-labs.org/teaching/rn-2012s/animations/flow/index.htm
http://www.ccs-labs.org/teaching/rn-2012s/animations/flow/index.htm


Silly Window Syndrome 

7 



Nagle's Algorithm 
• Sender-side silly window avoidance 

• Application produces data to send 

– If >= MSS, send segment 

– If no segments in flight, send the segment 

– Otherwise queue the data 

• Limits to one small segment in network 

– But bad for interactive apps like gaming 

– Especially bad if combined with delayed ACKs 
• write byte, write byte, read byte 

– Can be disabled, TCP_NODELAY option 

8 



Clark's solution 

• Receiver-side silly window avoidance 

• Do not send window size update unless: 

– It can handle full MSS size 

– Half of its buffer is empty 

9 



• Sequence number  
– 32 bits longs 

• Receive window 
– 16 bits long 

– TCP has satisfied the requirement 
of the sliding window algorithm 
that the sequence number space 
be twice as big as the window size  

– 232 >> 2 × 216 

Limits in the TCP header 

Source port # Dest port # 

32 bits 

Application 
data  
(variable length) 

Sequence number 

Acknowledgement number 

Receive window 

Urg data pointer Checksum 

F S R P A U 
not 
used 

Options (variable length) 

10 



• Relevance of the 32-bit sequence number space 
– Sequence number may wraparound  
– A byte with sequence x could be sent, then later time a 

second byte with the same sequence x could be sent 
– Packets cannot survive in the Internet for longer than the 

maximum segment lifetime: MSL = 120s 
– Sequence number must not wrap around within MSL 

Protecting against wraparound 

11 



• 16-bit receive window must allow sender to keep the pipe full 

• If the receiver has enough buffer space 

– Window can be opened to allow a full delay × bandwidth product's 
worth of data 

Keeping the pipe full 

Required window size for 100 ms RTT 

12 



TCP extensions 
• Timestamp option 

– Timestamp added to segment by the sender 

– Echoed by the received 

– Sender can then compute RTT 

– Also can be combined with sequence number 
• Protects against wraparound 

• Large window option 

– Use a scale factor 

– Left shift window size field by up to 14 bits 

– Windows of up to 230 bytes 
 

13 



TCP extensions 
• Selective acknowledgements (SACK) 

– Optional header fields used to acknowledge additional 
blocks 

– Sender can then resubmit only missing blocks 

• Maximum Segment Size (MSS) 

– Only valid extension during connection setup 

– Set a non-default value for maximum segment size 

14 



Before exchanging data, sender/receiver handshake: 

• Agree to establish connection  

• Agree on connection parameters 

connection state: ESTAB 
connection variables: 

seq # client-to-server 
      server-to-client 
rcvBuffer size 
at server,client  
            

application 

network 

connection state: ESTAB 
connection variables: 

seq # client-to-server 
      server-to-client 
rcvBuffer size 
at server,client  
            

application 

network 

Socket clientSocket =    
  newSocket("hostname", port); 

Socket connectionSocket = 
welcomeSocket.accept(); 

15 

Connection management 



Q: Will 2-way handshake 
always work in 
network? 

• Variable delays 

• Retransmitted messages 
(e.g. req_conn(x)) due to 
message loss 

• Message reordering 

• One side can't see other 
side 

2-way handshake: 

Let's talk 

OK 
ESTAB 

ESTAB 

choose x 
 

req_conn(x) 

ESTAB 

ESTAB 
acc_conn(x) 

16 

Agreeing to establish a connection 



2-way handshake failure scenarios: 

retransmit 
req_conn(x) 

 

ESTAB 

req_conn(x) 

Half open connection! 
(no client) 

client 
terminates 

server 
forgets x 

connection  
x completes 

retransmit 
req_conn(x) 

 

ESTAB 

req_conn(x) 

data(x+1) 

retransmit 
data(x+1) 

 

accept 
data(x+1) 

choose x 
 req_conn(x) 

ESTAB 

ESTAB 

acc_conn(x) 

client 
terminates 

ESTAB 

choose x 
 req_conn(x) 

ESTAB 

acc_conn(x) 

data(x+1) accept 
data(x+1) 

connection  
x completes server 

forgets x 

17 

Agreeing to establish a connection 



SYNbit=1, Seq=x 

Choose init seq num, x 
 

Send TCP SYN msg 

ESTAB 

SYNbit=1, Seq=y 
ACKbit=1; ACKnum=x+1 

Choose init seq num, y 
 

Send TCP SYNACK 
msg, acking SYN 

ACKbit=1, ACKnum=y+1 

Received SYNACK(x)  
indicates server is live; 

 

Send ACK for SYNACK; 
 

This segment may contain  
client-to-server data 

Received ACK(y)  
indicates client is live 

SYNSENT 

ESTAB 

SYN RCVD 

Client state 
 LISTEN 

Server state 
 LISTEN 

18 

TCP 3-way handshake 



closed 

L 

listen 

SYN 
rcvd 

SYN 
sent 

ESTAB 

Socket clientSocket =    
  newSocket("hostname", port); 

SYN(seq=x) 

Socket connectionSocket = 
welcomeSocket.accept(); 

SYN(x)  
SYNACK(seq=y, ACKnum=x+1) 
create new socket for  
communication back to client 

 
SYNACK(seq=y, ACKnum=x+1) 
 

  
ACK(ACKnum=y+1) 
 

 
ACK(ACKnum=y+1) 
 

L 

19 

TCP 3-way handshake: FSM 



Client, server each close their side of connection 

 Send TCP segment with FIN bit = 1 

Respond to received FIN with ACK 

 On receiving FIN, ACK can be combined with own FIN 

Simultaneous FIN exchanges can be handled 

20 

TCP: closing a connection 



21 



FIN_WAIT_2 

CLOSE_WAIT 

FINbit=1, seq=y 

ACKbit=1; ACKnum=y+1 

ACKbit=1; ACKnum=x+1 

 Wait for server 
close 

Can still 
send data 

Can no longer 
send data 

LAST_ACK 

CLOSED 

TIMED_WAIT 

 Timed wait  
for 2*max  

segment lifetime 

CLOSED 

FIN_WAIT_1 FINbit=1, seq=x Can no longer 
send but can 
 receive data 

clientSocket.close() 

Client state 
 

Server state 
 

ESTAB ESTAB 

22 

TCP: closing a connection 



Connection: three-way handshake 

23 

Client Server 

LISTEN, ACCEPT 
Passively waits for incoming 
connection 
 

CONNECT 
Sends TCP segment to 
(IP, port) with SYN bit 
on, ACK bit off 
 

Receives segment. 
 
OS hands off to process that 
has done LISTEN on port. 
 
If process accepts, send TCP 
with SYN and ACK bit set. 
 

Server has to remember it's 
sequence number in step 2 

Client Server 



SYN flooding 
• SYN flooding 

– Denial-of-service attack 
• Attacker sends large number of SYN 

requests 

• Never responds or spoofs source IP 
address 

– Server runs out of resources  
• Server has to track assigned sequence 

number 

• Fills with half-open connections 

 

24 



SYN cookies 
• Server generates sequence number  

– Uses cryptographic process 

– Combine counter, MSS requested, and secret generated 
from client/server IP and ports 

• Fires off response, forgetting number 

• Recover original sequence number if client responds 

 

25 

http://cr.yp.to/syncookies.html 
 

http://nmap.org/nmap_doc.html 
 

http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
http://nmap.org/nmap_doc.html
http://nmap.org/nmap_doc.html


26 

$ nmap -v -A 106.187.54.31 -p 1-65535 
... 
Scanned at 2012-10-16 16:31:38 MDT for 1391s 
Not shown: 65526 closed ports 
PORT     STATE    SERVICE    VERSION 
22/tcp   open     ssh        OpenSSH 5.9p1 Debian 5ubuntu1 (protocol 2.0) 
| ssh-hostkey: 1024 c5:ea:eb:88:a3:f1:d1:2d:5f:ed:63:c2:a8:54:bf:33 (DSA) 
|_2048 d1:b3:75:95:ed:2a:13:90:27:89:1b:f4:f5:2b:b8:7c (RSA) 
25/tcp   filtered smtp 
53/tcp   filtered domain 
67/tcp   filtered dhcps 
68/tcp   filtered dhcpc 
80/tcp   open     http       Apache httpd 2.2.22 ((Ubuntu)) 
|_http-methods: No Allow or Public header in OPTIONS response (status code 200) 
|_http-title: Site doesn't have a title (text/html). 
1433/tcp filtered ms-sql-s 
1434/tcp filtered ms-sql-m 
8080/tcp open     http-proxy Squid http proxy 3.1.19 
|_http-methods: No Allow or Public header in OPTIONS response (status code 400) 
Service Info: OS: Linux; CPE: cpe:/o:linux:kernel 
Final times for host: srtt: 188947 rttvar: 3251  to: 201951 
... 

nmap versus Tokyo 



Summary 

• TCP flow control 

– Each side informs other of available buffer space 

– Other side never has more than that unACKed in-
flight 

• TCP connection setup 

– Three-way handshake 

– Each size chooses random sequence number 

– Can be exploited:  

• SYN flood attack 

• Port scanning (NMAP) 

 

27 


