Network principles, the web and HTTP

Computer Networking: A Top Down Approach

6" edition

Jim Kurose, Keith Ross Some materials copyright 1996-2012
Addison-Wesley J.F Kurose and K.W. Ross, All Rights Reserved

Overview

Chapter 2: Application Layer

— Many familiar services operate here
* Web, email, Skype, P2P file sharing

— Socket programming

Network architectures

— Client/server vs. Peer-to-peer

Network principles
The Web
— History

— Basic operation

application

transport

network

link

physical

Quters Navgaie Hodsts

=) & »|w 1 10 01 lalﬂl &< 2|
‘_1_][o = S

\MOSAIC

N(\‘\Mﬁ.ucmlr‘ﬂ crosoft Windows
Felcome to the Masaic for Macroseft Windows Home Page Mostit o 8 Wodld Wide Web chent
) uu-kvr)r;edd&am' .I “enter fox reotguting Applications o the campus of The
verexy af Mnoe in Urbane -Chaspagn

Search Our Space

News and Announcements
v

@ Newt! Winlls Informiston

- b AT A

e

Some network apps

E-mail

Web

Text messaging
Remote login
P2P file sharing

Multi-user network
games

Streaming stored video
— YouTube, Hulu, Netflix

Voice over IP

— Skype
Real-time video
conferencing

Social networking
Search

Creating a network app

application
transport
network

Write programs that:

* Run on (different) end systems
e Communicate over network

* e.g. web server software
communicateswith browser
software

No need to write software for
network-core devices

* Network-coredevices do not run
user applications

e Applications on end systems
allows for rapid app development

Client-server architecture

Server:

* Always-on host
* Permanent IP address
* Data centers for scaling

Clients:

e Communicate with server

 May be intermittently
connected

 May have dynamic IP
addresses

Do not communicatedirectly
with each other

Peer-to-Peer (P2P) architecture

No always-on server

Arbitrary end systems
directly communicate

Peers request service from
other peers, provide service
in return to other peers

— Self scalability — new
peers bring new capacity
as well as demands

Peers are intermittently
connected and change IP
addresses

— Complex management

peer-peer

=
(=

Processes communicating

Process: program running within a host

* Within same host, two processes communicate using
inter-process communication (defined by OS)

* Processes in different hosts communicate by exchanging

messages
- Clients, Servers
Client process: + Aside: applications with
Process that initiates communication P2P architectures have
client processes and
Server process: Server processes too
Process that waits to be contacted

Sockets

* Process sends/receives messages to/from its socket
e Socket analogous to door

— Sending process shoves message out door

— Relies on transport infrastructure on other side to deliver
message to socket at receiving process

application

socket \

application

Controlled by
app developer

Controlled
by OS

' u

Internet

v

Addressing processes

To receive messages, |dentifier includes both
process must have IP address and port
identifier numbers associated with
Host device has unique process on host

32-bit IP address e Example port numbers:
Q: Does |P address of — HTTP server: 80

host on which process — Mail server: 25

runs suffice for * Tosend HTTP message
identifying the process? to gaia.cs.umass.edu
A: No, many processes web server:

can be running on — IP address:

same host 128.119.245.12

— Port number: 80

App-layer protocol defines

Types of messages Open protocols:
exchanged, « Defined in RFCs
— e.g. request, response * Allows for interoperability
Message syntax: * e.g. HITP,SMTP
— what fields in messages Proprietary protocols:

& how fields are . e.g. Skype

delineated

Message semantics

Rules for when and
how processes send &
respond to messages

10

What services does an app need?

Data integrity Throughput
* Some apps require 100% * Some apps require minimum
reliable data transfer amount of throughput to be
effective

— File transfers
— Web transactions

* Other apps can tolerate some
loss

— Multimedia

 Other "elastic" apps make use
of whatever throughput they

— Internet radio get
o — File transfers
Timing — Electronic mail
e Somea S require |OW .
PhsTed Security

delay to be "effective"

— Internet telephony * Encryption, data integrity,
— Interactive games end-point authentication

Requirements: common apps

application dataloss throughput time sensitive
file transfer no loss elastic no
e-mail noloss elastic no
Web documents no loss elastic no

real-time audio/video

stored audio/video
interactive games
text messaging

loss-tolerant

loss-tolerant
loss-tolerant
no loss

audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above

few kbps up

elastic

yes, 100's msec

yes, few secs
yes, 100's msec
yes and no

Internet transport protocols

UDP service:

TCP service:

Reliable transport between
sending and receiving
process

Flow control: sender won't
overwhelm receiver

Congestion control: throttle
sender when network
overloaded

Does not provide: timing,
minimum throughput
guarantee, security

Connection-oriented: setup
required between client and
server processes

Unreliable data transfer
between sending and
receiving process

Does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup,

Q: Why bother? Why is there

a UDP?

13

Internet apps: transport protocols

application underlying
application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (e.g., YouTube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary
(e.g., Skype) TCP or UDP

Securing TCP

TCP & UDP

No encryption

Cleartext passwords sent
traverse Internet in
cleartext

SSL

Provides encrypted TCP
connection

Data integrity
End-point authentication

SSL is at app layer

Apps use SSL libraries,
which "talk" to TCP

SSL socket API

Cleartext passwords sent
traverse Internet
encrypted

See chapter 7

Internet history

1990, 2000's: commercialization, the Web, new apps

Early 1990's:

— ARPAnet decommissioned

1991:

— NSF lifts restrictions on commercial use of NSFnet

Early 1990's:
— Web based on hypertext
— [Bush 1945, Nelson 1960's]

Late 1990's:

— Commercialization of the web

2000's:

— More killer apps: instance messaging, P2P file sharing
— Network security becomes important

— Estimated 50 million hosts, 100+ million users

— Backbone links running at Gbps

16

D SRR AT ARG Y L s,

|
!

L TR

A PROPRIETE CERN

- : — >) _u:- n p——— -~ - - —.
. . -
i . Ll -] = ‘
— - “4 » Y - :
> —— o o \ » " .
AN S - o

A short history of the web

1989 Tim Berners-Lee at CERN

1990 HTTP/0.9, HTML, URLs,
first text-based browser

1993 Marc Andreesen releases
NCSA Mosaic, graphical browser

1993 CERN agrees to release

protocol royalty-free N T S—— e
el 8|| =|x| <|>|o|e| | B|2| &|%| 2| g
1994 Andreesen forms Netscape == —————— 3D
1994 W3C formed, MOSAIC
stan d d rd iZ | ng p rOtOCOIS, NCSA Mosaic ™ for Microsoft Windows
encouraging interoperability S e o e e co
Search Our Space
News and Announcements
: v:-:;n'j;:gs !{xfemxfncn i -

18

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

A short history of the web

e 1994+ Browser wars between

Netscape and IE

* 1990s-2000 Dot com era

BROWSERS WAR

O0Others (Opera, Safari, PSP}
EMetscape
Wozilla, Firefox

B Google Chrome
Winternet Explorer for Windows

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

19

"In the Web's first generation, Tim Berners-Lee launched the
Uniform Resource Locator (URL), Hypertext Transfer Protocol (HTTP),
and HTML standards with prototype Unix-based servers and
browsers.

A few people noticed that the
Web might be better than Gopher.

In the second generation, Marc Andreessen and Eric Bina developed
NCSA Mosaic at the University of lllinois.

Several million then suddenly noticed that the
Web might be better than sex.

In the third generation, Andreessen and Bina left NCSA to found
Netscape..."

Microsoft and Netscape open some new fronts in escalating Web Wars
By Bob Metcalfe, InfoWorld, August 21, 1995, Vol. 17, Issue 34.

Architecture of the web

e g g cheny oo len R
WE A o v e I N
W Ui e et e

0 Lnivernity of wachingion

P lvivepapity w Woahdegg-wt 7 Lo o Prgesiscig DD mbesy i1 lom wl Selere

Ty
CEF
Evsom ol [ails
B e
Beswarc s
Frogia
(LS]
Fpal L
Caargrt g ¥ b liived
s FgrEin i T oo ey
Papll, slen | ented
Supwnn OV
Inforr allen for
= FLRTS T
CIErem brotern

Hyperlink

P b Brpmal Wiy

.\“d.q.“ll-ldtﬂ—-“-!mk Do ol jore s a4
A 17 e Pl o Mt P oag e] e i gy . e w15 ey
I:’:_-hr*-DLﬂG‘F e e B Gt boacs gd Coppyr Boprereyg o s sl i oy e o o

R L TR R oL
Wﬂ ® ol e = g | -

A e it e " Rt

- b o

invhoTrgtlen hae CLSTRR Sa s oy S

?

Document
Program 1 _

Database

\

\ / youtube.com
-.
\

HTTP Request
-

==/

Web server

Web www.cs.washington.edu
browser

-
HTTP Response

%

==

google-analytics.com

21

Web components: finding stuff

 Uniform Resource Locator (URL)
— A page's worldwide name

— Three parts:
* Protocol (scheme)
* DNS name of machine
* Hierarchical name that models a file directory structure

Name Used for Example

Chttp | Hypertext (HTML) - http://www.ee.uwa.edu/~rob/

https | Hypertext with security | https://www.bank.com/accounts/

| ftp . FTP . ftp://ftp.cs.vu.nl/pub/minix’ README
file Local file file:///usr/suzanne/prog.c

' mailto | Sending email | mailto:JohnUser@acm.org

crtsp | Streaming media - rtsp://youtube.com/montypython.mpg |
' sip . Multimedia calls . sip:eve @adversary.com

| about | Browser information | about:plugins |

22

Web components: finding stuff

* URL points to one specific host
* Uniform Resource Identifier (URI)

— Say what you want, not necessarily where from

— Uniform Resource Locators (URL)

* http://www.amazon.com/Last-Unicorn-Peter-S-
Beagle/dp/0451450523

— Uniform Resource Name (URN)
* urn:isbn:0451450523

URI
l

URN)

C
Ry,
—

Web components: HTML

 HyperText Markup Language (HTML)
— Represents hypertext documentsin ASCII form
— Format text, add images, embed hyperlinks
— Web browser renders

 Simple and easy to learn
— Hack up in any text editor
— Or use a fancy authoring program
* Web page
— Base HTML file references objects
— Each object has its own URL

_ltem
Hyperlinks

:Images

_Lists

_Active maps & images

_Forms
Equations
:Tonlbars
Tables
_Accessibility features
:Object embedding
Style sheets
:Scripting
_Video and audio
Inline vector graphics
:}(ML representation
Background threads
:Browser storage
_Drawing canvas

HTML versions

 HTML 1.0 HTML20 HTML3.0 HTML4.0 HTML5.0

X
X
X

AR S S
A A L R

R - - A A A . ..

E A A A R A A - A - A A - A]

25

Web components: HTTP

 HyperText Transfer Protocol (HTTP)
— Simple request-response protocol
— Runs over TCP on port 80
— ASCIl format request and response messages

— A stateless protocol
carriage return character

) line-feed character
Requestline

(GET, POST, I GET /index.html HTTP/1.1\r\n
HEAD commands) [Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
header Accept: text/html,application/xhtml+xml\r\n
: Accept-Language: en-us,en;g=0.5\r\n
lines | accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;g=0.7\r\n
carriage return, Keep-Alive: 115\r\n
line feed at start Connection: keep-alive\r\n

of line indicates \rin
end of header lines

HTTP message format

method |Sp URL sp| version |cr|If
header field name value |cr| If
header field name value |cr| If

cr| If

(

entity body

request

1 line

header
lines

body

27

Request methods

Method

Description

' GET

- Read a Web page

HEAD

GET /rfc.html HTTP/1.1 ' POST

Read a Web page’s header

" Append to a Web page

Host: www.ietf.org

User-agent: Mozilla/4.0 | PUT

.~ Store a Web page

. DELETE

. Remove the Web page

TRACE

Echo the incoming request

CONNECT

Connect through a proxy

| OPTIONS

| Query options for a page

POST /login.html HTTP/1.1

Host: www.store.com

User-agent: Mozilla/4.0

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

userid=joe&password=guessme

28

Header

:User-Agent

:_Accepi

| Accept-Charset
'_Accept-Enching
;_Accept-Language
If-Modified-Since
:_If-None-Match

:H{::st

- Authorization

::F{eferer

I_C{::Dkie
:_Sei-Cookie
I_Se rver

Message headers

Type

: Request
- Request
: Request
- Request
: Request
‘ Request
- Request
: Request
- Request
: Request

Request
: Response :
. Response |

Contents

: Information about the browser and its platform

- The type of pages the client can handle

: The character sets that are acceptable to the client |
- The page encodings the client can handle |
The natural languages the client can handle

‘ Time and date to check freshness

- Previously sent tags to check freshness

: The server's DNS name

-~ Alist of the client’s credentials

The previous URL from which the request came

Previously set cookie sent back to the server
Cookie for the client to store
Information about the server

29

j_C‘,{::ntéaint-En(:uc::ding

Content-Language |
‘ Response ‘

| Content-Length
:_C{:ntent-Type
:C{::ntent-Fiange
| Last-Modified
._E}(pires
:_Locati{::n
__Accept-ﬁanges
:_Date

._Hange
:_Cache-CDntml
_ETag

[U pgrade

Message headers

- Response |

. Response |
Response
. Response |

- Response

Response
- Response |

. Both
~ Both
' Both

Both
| Both

Response |

How the content is encoded (e.q., gzip)
The natural language used in the page
The page’s length in bytes

The page’s MIME type

Identifies a portion of the page’s content
Time and date the page was last changed

- Time and date when the page stops being valid

Tells the client where to send its request

Indicates the server will accept byte range requests ._
| Date and time the message was sent |
| Identifies a portion of a page

| Directives for how to treat caches

Tag for the contents of the page

| The protocol the sender wants to switch to

30

HTTP response

* Response from server

— Status line:
* Protocol version, status code, status phrase

— Response headers: extra info

— Body: optional data \17p/1.1 200 ok

Date: Thu, 17 Nov 2011 15:54:10 GMT

Server: Apache/2.2.16 (Debian)

Last-Modified: Wed, 14 Sep 2011 17:04:27 GMT
Content-Length: 285

<html> ...
Code Meaning Examples
1xx | Information | 100 = server agrees to handle client’s request
2XX | Success - 200 = request succeeded; 204 = no content present |

3xx | Redirection | 301 = page moved; 304 = cached page still valid
4XX Client error 403 = forbidden page; 404 = page not found
| 5xx | Server error | 500 = internal server error; 503 = try again later 2

Summary

Architectures for network apps
— Client/server, Peer-to-peer (P2P)

— Process-to-processcommunicationvia sockets

Services needed by network apps
— TCP /UDP

The Worldwide Web
— History

— Basic components:
* HTTP
* HTML
* URLs

Next time: HTTP and web in-depth

32

