
Pipelined reliable transport

Computer Networking: A Top Down Approach
6th edition

Jim Kurose, Keith Ross

Addison-Wesley
Some materials copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

– Segment structure

– Reliable data transfer

– Flow control

– Connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

2

Overview

3

• Reliable data transfer

– Real networks, packets get corrupted, lost or
delayed

– Use ACKs, sequences numbers, timers to make
reliable

– e.g. rdt3.0 using stop-and-wait-protocol

– Problem: way to slow for fat long pipes

• Pipelined reliable data transfer

– Good-Back-N (GBN) protocol

– Selective Repeat (SR) protocol

Sender Receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

Sender Receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

4

rcv pkt1
send ack1

(detect duplicate)

pkt1

Sender Receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

Sender Receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout / delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0 ack0

rcv pkt0

send ack0
(detect duplicate)

rdt3.0 in action

5

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008

30.008
= 0.00027

L / R

RTT + L / R
=

rdt3.0: stop-and-wait operation

6

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged packets

– Range of sequence numbers must be increased

– Buffering at sender and/or receiver

Two generic forms of pipelined protocols:

 Go-Back-N (GBN)

 Selective Repeat (SR)
7

Pipelined protocols

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

8

Pipelining: increased utilization

Go-Back-N:

• Sender can have up to N
unACKed packets in
pipeline

• Receiver only sends
cumulative ACK
– Doesn't ACK packet if

there's a gap

• Sender has timer for
oldest unACKed packet
– When timer expires,

retransmit all unACKed
packets

Selective Repeat:

• Sender can have up to N
unACKed packets in
pipeline

• Receiver sends individual
ACK for each packet

• Sender maintains timer
for each unACKed packet
– When timer expires,

retransmit only that
unACKed packet

9

Pipelined protocols: overview

N = window size
sliding-window protocol

• k-bit sequence # in packet header

• Window of up to N, consecutive unACKed packets allowed

 ACK(n): ACKs all packets up to, including sequence # n

 Cumulative ACK

 May receive duplicate ACKs (see receiver)

 Timer for oldest in-flight packet

 timeout(n): retransmit packet n and all higher sequence #
packets in window

10

Go-Back-N: sender

Wait
start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
 udt_send(sndpkt[nextseqnum])
 if (base == nextseqnum)
 start_timer
 nextseqnum++
}
else
 refuse_data(data)

base = getacknum(rcvpkt) + 1
if (base == nextseqnum) stop_timer
else start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

L

11

L

Invocation from above. If
window is not full, create
and send packet. If full,
return data to sender.

Receipt of ACK. Receipt
of packet with seq. # n,
all packets up to an
including n are good.

Timeout. Resend all packets
that have been previously
sent but not ACK'd.

GBN sender

• ACK-only: always send ACK for correctly-received
packet with highest in-order sequence #

– May generate duplicate ACKs

– Need only remember expectedseqnum

• Out-of-order packet:

– Discard (don't buffer): No receiver buffering!

– Re-ACK packet with highest in-order sequence #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt) &&
hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

L

12

GBN receiver Expected packet. Packet
received in order, send ACK
for packet n, deliver data

Unexpected packet. Send
ACK for last received good
in-order packet

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

X loss

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

13

GBN in action

http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/go-back-n/index.html

http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/go-back-n/index.html
http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/go-back-n/index.html
http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/go-back-n/index.html
http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/go-back-n/index.html
http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/go-back-n/index.html

Selective repeat
• Receiver individually acknowledges all correctly

received packets

– Buffers packets, as needed, for eventual in-order
delivery to upper layer

• Sender only resends packets for which ACK not
received

– Sender timer for each unACKed packet

• Sender window

– N consecutive sequence #'s

– Limits sequence #s of sent, unACKed packets

14

15

Selective repeat: sender, receiver, windows

Data from above:

 If next available sequence #
in window, send packet

Timeout(n):

 Resend packet n, restart
timer

ACK(n) in [sendbase,sendbase+N]:

 Mark packet n as received

 If n smallest unACKed
packet, advance window
base to next unACKed
sequence #

Sender

Packet n in [rcvbase, rcvbase+N-1]

 Send ACK(n)

 Out-of-order: buffer

 In-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-
yet-received packet

Packet n in [rcvbase-N,rcvbase-1]

 ACK(n)

Otherwise:

 Ignore

Receiver

16

Selective repeat

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer, send ack3

rcv ack0, send pkt4
rcv ack1, send pkt5

pkt 2 timeout
send pkt2

X loss

receive pkt4, buffer, send ack4

receive pkt5, buffer, send ack5

rcv pkt2
deliver pkt2, pkt3, pkt4, pkt5
send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack5 arrived

Q: What happens when ack2 arrives?

17

Selective repeat in action

Selective repeat:
dilemma

Example:

 Sequence #'s: 0, 1, 2, 3

 Window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2 X

X
X

Will accept packet
with seq number 0 (b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

Will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

Receiver can't see sender side.
Receiver behavior identical in both cases!
Something's (very) wrong!

 Receiver sees no
difference in two
scenarios!

 Duplicate data accepted
as new in (b)

Q: What relationship
between sequence #
size and window size to
avoid problem in (b)?

18
http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/SR/index.html

http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/SR/index.html

Reliable data transport mechanisms

19

Checksum Detect bit errors in a packet

Timer Used to retransmit packet should the packet
or its ACK never arrive.

Sequence number Used to resend since packets or ACK of packet
may go missing

Acknowledgment
(ACK)

Used to tell sender that receiver has gotten
certain packet or set of packets. Typically
carries the sequence number.

Negative
acknowledgment
(NACK)

Used to tell sender that receiver got a
corrupted packet. Typically carries a sequence
number.

Window, pipelining Sender can only send packets within a certain
window of sequence numbers. Increases
utilization compared to stop-and-wait
protocol.

Summary

• Reliable data transport

– Handles packet corruption, lose, or delay

– Tricky but can be done using ACKs, sequence
numbers, and timers (e.g. rdt3.0)

• Efficient reliable data transport

– Even more complex since stop-and-wait too slow

– Multiple unACKed packets in flight

– Go-Back-N

– Selective repeat

20

