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4.1 Introduction 

4.2 Virtual circuit and 
datagram networks 

4.3 What's inside a router 

4.4 IP: Internet Protocol 

– Datagram format 

– IPv4 addressing 

– Network Address 
Translation (NAT) 

– DHCP 

– ICMP 

– IPv6 

– IPsec 

4.5 Routing algorithms 

 Distance vector 

 Link state 

 Hierarchical routing 

4.6 Routing in the Internet 

 RIP 

 OSPF 

 BGP 

4.7 Broadcast and 
multicast routing 

 

Chapter 4: outline 
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Autonomous System (AS) 

• Autonomous System (AS) 

– Distinct region of admin control 

– Routers/links managed by a single institution 

– Each AS can decide how to route within their AS 

– Today: Intra-AS routing 

– Next time: Inter-AS routing 
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Network as a graph 

• Nodes: 

– Hosts, switches, routers, networks 

• Edges: 

– Network links 

– May have an associated cost 

• Basic problems:  

– Learning the topology 

– Finding lowest cost path 
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Routing protocols 

• Distributed algorithm 

– Running on many devices 

– No central authority 

– Must deal with changing topology 

• Classes of routing algorithms: 

– Distance vector routing 

– Link state routing 

– Path vector (hierarchical) routing 
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Distance vector routing 

• Each node maintains state 

– Cost of direct link to each of your neighbors 

– Least cost route known to all destinations 

• Routers send periodic updates 

– Send neighbor your array 

– When you receive an update from your neighbor 

• Update array entries if new info provides shorter route 

– Converges quickly (if no topology changes) 
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Distance vector updates 

• Periodic updates 

– Automatically send update every so often 

– Lets other nodes know you are alive 

• Triggered updates 
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Wait for (change in local link 

cost or update from neighbor) 

 

Recompute estimates 

 

If distance to any destination 

has changed, notify neighbors  

 



Link cost change 

• What if link added or cost reduced? 

– Update propagates from point of change 

– Network with longest path of N hops: 

• N exchanges, everyone knows of new/improved link 

– "Good news travels fast" 
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Link cost change 

• What if link deleted or cost increased? 

– Problem: Neighbor has a path somewhere, but 
you don't know if it goes through you 

• Count to infinity problem 

– "Bad news travels slow" 
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Count-to-infinity 

• Various ways to "fix": 

– Use a small values for infinity, e.g. 16 

• Limits network size to 15 hops 

– Split horizon with poisoned reverse 

• Track where you learned the route 

• e.g. (E, 2, A), I learned a cost 2 route to E from A 

• When B updates A, sends (E, ∞) 

• Only works for two node routing loops 

– Holddown timer 

• Start a timer when a network becomes unreachable 

• Don't update until timer expires 
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RIP 

• Routing Information Protocol (RIP) 

– Distance-vector protocol 

– Used in original ARPANET, in BSD 

– All links costs 1 

– Advertise every 30 seconds 

– Small networks, < 16 hops 

– Runs over UDP 
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w x y 
z 

A 

C 

D B 

destination subnet   next  router      # hops to dest 

  w   A  2 
 y   B  2 
  z   B  7 
 x   --  1 
 ….   ….  .... 

routing table in router D 

A 5 

 dest     next  hops 
   w   -       1 
   x   -       1 
   z   C      4 
   ….   …     ... 

A-to-D advertisement 

RIP: example 
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If no advertisement heard after 180 sec --> 
neighbor/link declared dead 

 Routes via neighbor invalidated 

 New advertisements sent to neighbors 

 Neighbors in turn send out new advertisements (if 
tables changed) 

 Link failure info quickly (?) propagates to entire net 

 Poison reverse used to prevent ping-pong loops 
(infinite distance = 16 hops) 

RIP: link failure, recovery 
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RIP routing tables managed by application-
level process called route-d (daemon) 

Advertisements sent in UDP packets, 
periodically repeated 

physical 
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physical 

link 

network 
   (IP) 

transprt 
  (UDP) 

routed 

forwarding 
table 

RIP table processing 
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Link state routing 

• Link state routing 

– Each router tracks its immediate links 

• Whether up or down 

• Cost of link 

– Each router broadcasts link state 

• Information disseminated to all nodes 

• Routers have global state from which to compute path 

– e.g. Open Shortest Path First (OSPF) 
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1. Learning about your neighbors 

• Beaconing 

– Find out about your neighbors when you boot 

– Send periodic "hello" messages to each other 

– Detect a failure after several missed "hellos" 

 

 

• Beacon frequency is tradeoff: 

– Detection speed 

– Bandwidth and CPU overhead 

– Likelihood of false detection 
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"hello" 

"good day fine sir" 



2. Setting link costs 

• Assign a link cost for each outbound link 

– Manual configuration 

– Automatic 

• Inverse of link bandwidth 
– 1-Gbps cost 1 

– 100-Mbps cost 10 

• Measure latency by sending an ECHO packet 
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3. Building link state packets 

• Package info into a Link State Packet (LSP) 

– Identity of sender 

– List of neighbors 

– Sequence number of packet 

– Age of packet 
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4. Distributing link state 

• Flooding 

– Send your LSP out on all links 

– Next node sends LSP onward using its links 

• Except for link it arrived on 
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a) LSP arrives at node X 
b) X floods LSP to A and C 
c) A and C flood LSP to B 

(but not X) 
d) flooding complete 



4. Distributing link state 

• Making flooding reliable 

– Use acknowledgments and retransmissions 
between routers 

– Use sequence numbers 

• Discard info from packets older than your current info 

– Time-to-live TTL keeps LSP from being endlessly 
forwarded 

• When to distribute? 

– Periodic timer 

– On detected change 
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5. Computing routes 

• Router has accumulated full set of LSPs 

– Construct entire network graph 

– Shortest path from A to B? 
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Dijkstra's algorithm 
• Net topology known to all nodes 

– All nodes have same info 

• Computes least cost paths from 
some source node to all other nodes 
– Gives forwarding table for that node 

• Iterative: after k iterations, know 
least cost path to k dest's 

Notation: 

c(x,y): Link cost from 
node x to y;  ∞ if not 
direct neighbors 

D(v): Current value of 
cost of path from 
source to dest. v 

p(v): Predecessor 
node along path from 
source to v 

N': Set of nodes 
whose least cost path 
definitively known 

 



1  Initialization:  
2    N' = {u}  
3    for all nodes v  
4      if v adjacent to u  
5          then D(v) = c(u,v)  
6      else D(v) = ∞  
7  
8   Loop  
9     find w not in N' such that D(w) is a minimum  
10    add w to N'  
11    update D(v) for all v adjacent to w and not in N' :  
12       D(v) = min( D(v), D(w) + c(w,v) )  
13    /* new cost to v is either old cost to v or known  
14     shortest path cost to w plus cost from w to v */  
15  until all nodes in N'  

Dijkstra's algorithm 
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26 



Step 
0 
1 
2 
3 
4 
5 

N' 
u 

ux 
uxy 

uxyv 
uxyvw 

uxyvwz 

D(v),p(v) 
2,u 
2,u 
2,u 

D(w),p(w) 
5,u 
4,x 
3,y 
3,y 

D(x),p(x) 
1,u 

D(y),p(y) 
∞ 

2,x 

D(z),p(z) 
∞  
∞  

4,y 
4,y 
4,y 

u 

y x 

w v 

z 

2 

2 

1 
3 

1 

1 

2 

5 
3 

5 

Dijkstra's algorithm: another example 

27 



u 

y x 

w v 

z 

Resulting shortest-path tree from u: 

v 
x 

y 

w 

z 

(u,v) 

(u,x) 

(u,x) 

(u,x) 

(u,x) 

destination link 

Resulting forwarding table in u: 

Dijkstra's algorithm: another example 
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Algorithm complexity: n nodes 

 Each iteration: need to check all nodes, w, not in N 

 n(n+1)/2 comparisons: O(n2) 

 More efficient implementations possible: O(nlogn) 

Oscillations possible: 

 e.g. support link cost equals amount of carried traffic: 

A 

D 

C 

B 

1 1+e 

e 0 

e 

1 1 

0 0 

Initially 

A 

D 

C 

B 

Given these costs, 
find new routing…. 

Resulting in new costs 

2+e 0 

0 0 

1+e 1 

A 

D 

C 

B 

Given these costs, 
find new routing…. 

Resulting in new costs 

0 2+e 

1+e 1 

0 0 

A 

D 

C 

B 

Given these costs, 
find new routing…. 

Resulting in new costs 

2+e 0 

0 0 

1+e 1 

Dijkstra's algorithm: discussion 
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Transient disruptions 

• Detection delay 

– Failures are not detected immediately 

– Router may forward packet into a "blackhole" 

– Chance depends on frequency of "hello" messages 
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Transient disruptions 

• Inconsistent link-state 

– Some routers know about a failure, others don't 

– Shortest path no longer consistent 

– Can causes transient forwarding loops 
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OSPF (Open Shortest Path First) 

• Open: publicly available 

• Uses link state algorithm  

– LS packet dissemination 

– Topology map at each node 

– Route computation: Dijkstra's algorithm 

• OSPF advertisements:  

– One entry per neighbor  

– Flooded to entire AS 

– Carried in OSPF messages directly over IP 

• IS-IS routing protocol 

– Nearly identical to OSPF 
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OSPF advanced features (not in RIP) 

• Security: All OSPF messages authenticated  

– To prevent malicious attacks 

• Multiple same-cost paths allowed  

– Only one path allowed in RIP 

• Multiple link cost metrics for different TOS  

– e.g. satellite link cost set low for best effort ToS; 
high for real time ToS 

• Integrated uni- and multicast support:  

– Multicast OSPF (MOSPF) uses same topology data 
base as OSPF 

• Hierarchical OSPF in large domains 
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area 
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internal 
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Hierarchical OSPF 
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• Two-level hierarchy: local area, backbone 

– Link-state advertisements only in area  

– Each node has detailed area topology; only knows 
direction (shortest path) to nets in other areas 

• Area border routers:  

– Summarize distances to nets in own area, 
advertise to other Area Border routers 

• Backbone routers:  

– Run OSPF routing limited to backbone 

• Boundary routers:  

– Connect to other AS's 

 

Hierarchical OSPF 
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Convergence delay 

• Sources of delay: 

– Time to detect failure 

– Time to flood link-state info 

– Shortest path computation 

– Creating the forwarding table 

• Before convergence: 

– Lost packets due to blackholes, TTL expiry 

– Looping packets  

– Out of order packets 

– Bad for Voice over IP, gaming, video 
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Reducing convergence delay 
• Detect failures faster 

– Increase beacon frequency 

– Link-layer technologies that can detect failures 

• Faster flooding 

– Flood immediately on a change 

– LSP sent with high-priority 

• Faster computation 

– Faster processors in routers 

– Faster algorithms  
• e.g. incremental Dijkstra's 

– Faster forwarding table update 
• e.g. data structures supporting incremental updates 
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Distance vector vs. Link state 
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Distance vector Link state 

Knowledge of neighbors' distance 
to destinations 

Knowledge of every router's links 
(entire network graph) 

Router has O(# neighbors * # 
nodes) 

Router has O(# edges) 
 

Messages only between neighbors Messages between all nodes 

Trust a peer's routing computation Trust a peer's info 
Do routing yourself 

Bellman-Ford algorithm Dijkstra's algorithm 

Advantages: 
Less info has to be stored 
Lower computation overhead 

Advantages: 
Fast to react to changes 



Summary 

• Intra-AS routing, two major types: 

– Distance vector 

• Router only know about its neighbors 

• RIP protocol 
– Original protocol on the ARPANET 

– Limited to networks < 16 hops 

– Link state 

• Full state of network known by each router 

• OSPF protocol 
– More advanced features: security, multiple paths, multiple 

cost metrics, routing areas 
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