
Intra-AS Routing

Computer Networking: A Top Down Approach
6th edition

Jim Kurose, Keith Ross

Addison-Wesley
Some materials copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

http://xkcd.com/85/

http://xkcd.com/85/

4.1 Introduction

4.2 Virtual circuit and
datagram networks

4.3 What's inside a router

4.4 IP: Internet Protocol

– Datagram format

– IPv4 addressing

– Network Address
Translation (NAT)

– DHCP

– ICMP

– IPv6

– IPsec

4.5 Routing algorithms

 Distance vector

 Link state

 Hierarchical routing

4.6 Routing in the Internet

 RIP

 OSPF

 BGP

4.7 Broadcast and
multicast routing

Chapter 4: outline

2
2

Autonomous System (AS)

• Autonomous System (AS)

– Distinct region of admin control

– Routers/links managed by a single institution

– Each AS can decide how to route within their AS

– Today: Intra-AS routing

– Next time: Inter-AS routing

3

Network as a graph

• Nodes:

– Hosts, switches, routers, networks

• Edges:

– Network links

– May have an associated cost

• Basic problems:

– Learning the topology

– Finding lowest cost path

4

Routing protocols

• Distributed algorithm

– Running on many devices

– No central authority

– Must deal with changing topology

• Classes of routing algorithms:

– Distance vector routing

– Link state routing

– Path vector (hierarchical) routing

5

Distance vector routing

• Each node maintains state

– Cost of direct link to each of your neighbors

– Least cost route known to all destinations

• Routers send periodic updates

– Send neighbor your array

– When you receive an update from your neighbor

• Update array entries if new info provides shorter route

– Converges quickly (if no topology changes)

6

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to

fr
o

m

fr
o

m

x y z

x

y

z

0

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z
1 2

7

y

node x
table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

 Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

3 2

node y
table

node z
table

cost to

fr
o

m

7

x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

0 2 7

fr
o

m

cost to

x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

0 2 3

fr
o

m

cost to
x y z

x

y

z

0 2 7

fr
o

m

cost to

2 0 1

7 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to

fr
o

m

fr
o

m

x y z

x

y

z

0

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z
1 2

7

y

node x
table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

 Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

3 2

node y
table

node z
table

cost to

fr
o

m

8

Distance vector updates

• Periodic updates

– Automatically send update every so often

– Lets other nodes know you are alive

• Triggered updates

9

Wait for (change in local link

cost or update from neighbor)

Recompute estimates

If distance to any destination

has changed, notify neighbors

Link cost change

• What if link added or cost reduced?

– Update propagates from point of change

– Network with longest path of N hops:

• N exchanges, everyone knows of new/improved link

– "Good news travels fast"

10

Link cost change

• What if link deleted or cost increased?

– Problem: Neighbor has a path somewhere, but
you don't know if it goes through you

• Count to infinity problem

– "Bad news travels slow"

11

Count-to-infinity

• Various ways to "fix":

– Use a small values for infinity, e.g. 16

• Limits network size to 15 hops

– Split horizon with poisoned reverse

• Track where you learned the route

• e.g. (E, 2, A), I learned a cost 2 route to E from A

• When B updates A, sends (E, ∞)

• Only works for two node routing loops

– Holddown timer

• Start a timer when a network becomes unreachable

• Don't update until timer expires

12

RIP

• Routing Information Protocol (RIP)

– Distance-vector protocol

– Used in original ARPANET, in BSD

– All links costs 1

– Advertise every 30 seconds

– Small networks, < 16 hops

– Runs over UDP

13

D C

B A

u v

w

x

y
z

subnet hops
 u 1
 v 2
 w 2
 x 3
 y 3
 z 2

From router A to destination subnets:

destination subnet next router # hops to dest

 w A 2
 y B 2
 z B 7
 x -- 1
 …. ….

routing table in router D

w x y
z

A

C

D B

RIP: example

14

w x y
z

A

C

D B

destination subnet next router # hops to dest

 w A 2
 y B 2
 z B 7
 x -- 1
 …. ….

routing table in router D

A 5

 dest next hops
 w - 1
 x - 1
 z C 4
 …. … ...

A-to-D advertisement

RIP: example

15

If no advertisement heard after 180 sec -->
neighbor/link declared dead

 Routes via neighbor invalidated

 New advertisements sent to neighbors

 Neighbors in turn send out new advertisements (if
tables changed)

 Link failure info quickly (?) propagates to entire net

 Poison reverse used to prevent ping-pong loops
(infinite distance = 16 hops)

RIP: link failure, recovery

16

RIP routing tables managed by application-
level process called route-d (daemon)

Advertisements sent in UDP packets,
periodically repeated

physical

link

network forwarding
 (IP) table

transport
 (UDP)

routed

physical

link

network
 (IP)

transprt
 (UDP)

routed

forwarding
table

RIP table processing

17

Link state routing

• Link state routing

– Each router tracks its immediate links

• Whether up or down

• Cost of link

– Each router broadcasts link state

• Information disseminated to all nodes

• Routers have global state from which to compute path

– e.g. Open Shortest Path First (OSPF)

18

1. Learning about your neighbors

• Beaconing

– Find out about your neighbors when you boot

– Send periodic "hello" messages to each other

– Detect a failure after several missed "hellos"

• Beacon frequency is tradeoff:

– Detection speed

– Bandwidth and CPU overhead

– Likelihood of false detection

19

"hello"

"good day fine sir"

2. Setting link costs

• Assign a link cost for each outbound link

– Manual configuration

– Automatic

• Inverse of link bandwidth
– 1-Gbps cost 1

– 100-Mbps cost 10

• Measure latency by sending an ECHO packet

20

3. Building link state packets

• Package info into a Link State Packet (LSP)

– Identity of sender

– List of neighbors

– Sequence number of packet

– Age of packet

21

4. Distributing link state

• Flooding

– Send your LSP out on all links

– Next node sends LSP onward using its links

• Except for link it arrived on

22

a) LSP arrives at node X
b) X floods LSP to A and C
c) A and C flood LSP to B

(but not X)
d) flooding complete

4. Distributing link state

• Making flooding reliable

– Use acknowledgments and retransmissions
between routers

– Use sequence numbers

• Discard info from packets older than your current info

– Time-to-live TTL keeps LSP from being endlessly
forwarded

• When to distribute?

– Periodic timer

– On detected change

23

5. Computing routes

• Router has accumulated full set of LSPs

– Construct entire network graph

– Shortest path from A to B?

24

Dijkstra's algorithm
• Net topology known to all nodes

– All nodes have same info

• Computes least cost paths from
some source node to all other nodes
– Gives forwarding table for that node

• Iterative: after k iterations, know
least cost path to k dest's

Notation:

c(x,y): Link cost from
node x to y; ∞ if not
direct neighbors

D(v): Current value of
cost of path from
source to dest. v

p(v): Predecessor
node along path from
source to v

N': Set of nodes
whose least cost path
definitively known

1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

Dijkstra's algorithm

25

w 3

4

v

x

u

5

3
7 4

y

8
z

2

7

9

Step

N'
D(v)

p(v)

0

1

2

3

4

5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,w uwx

uwxv 14,x 10,v
uwxvy 12,y

Notes:
 Construct shortest path tree by

tracing predecessor nodes

 Ties can exist (can be broken
arbitrarily)

uwxvyz

Dijkstra's algorithm: example

26

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

y x

w v

z

2

2

1
3

1

1

2

5
3

5

Dijkstra's algorithm: another example

27

u

y x

w v

z

Resulting shortest-path tree from u:

v
x

y

w

z

(u,v)

(u,x)

(u,x)

(u,x)

(u,x)

destination link

Resulting forwarding table in u:

Dijkstra's algorithm: another example

28

Algorithm complexity: n nodes

 Each iteration: need to check all nodes, w, not in N

 n(n+1)/2 comparisons: O(n2)

 More efficient implementations possible: O(nlogn)

Oscillations possible:

 e.g. support link cost equals amount of carried traffic:

A

D

C

B

1 1+e

e 0

e

1 1

0 0

Initially

A

D

C

B

Given these costs,
find new routing….

Resulting in new costs

2+e 0

0 0

1+e 1

A

D

C

B

Given these costs,
find new routing….

Resulting in new costs

0 2+e

1+e 1

0 0

A

D

C

B

Given these costs,
find new routing….

Resulting in new costs

2+e 0

0 0

1+e 1

Dijkstra's algorithm: discussion

29

Transient disruptions

• Detection delay

– Failures are not detected immediately

– Router may forward packet into a "blackhole"

– Chance depends on frequency of "hello" messages

30

3

2

2

1

1

4

1

4

5

3

✗

Transient disruptions

• Inconsistent link-state

– Some routers know about a failure, others don't

– Shortest path no longer consistent

– Can causes transient forwarding loops

31

3
2

2

1

1

4

1

4

5

3

3
2

2

1

1

4

1

4 3

OSPF (Open Shortest Path First)

• Open: publicly available

• Uses link state algorithm

– LS packet dissemination

– Topology map at each node

– Route computation: Dijkstra's algorithm

• OSPF advertisements:

– One entry per neighbor

– Flooded to entire AS

– Carried in OSPF messages directly over IP

• IS-IS routing protocol

– Nearly identical to OSPF
32

OSPF advanced features (not in RIP)

• Security: All OSPF messages authenticated

– To prevent malicious attacks

• Multiple same-cost paths allowed

– Only one path allowed in RIP

• Multiple link cost metrics for different TOS

– e.g. satellite link cost set low for best effort ToS;
high for real time ToS

• Integrated uni- and multicast support:

– Multicast OSPF (MOSPF) uses same topology data
base as OSPF

• Hierarchical OSPF in large domains
33

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

Hierarchical OSPF

34

• Two-level hierarchy: local area, backbone

– Link-state advertisements only in area

– Each node has detailed area topology; only knows
direction (shortest path) to nets in other areas

• Area border routers:

– Summarize distances to nets in own area,
advertise to other Area Border routers

• Backbone routers:

– Run OSPF routing limited to backbone

• Boundary routers:

– Connect to other AS's

Hierarchical OSPF

35

Convergence delay

• Sources of delay:

– Time to detect failure

– Time to flood link-state info

– Shortest path computation

– Creating the forwarding table

• Before convergence:

– Lost packets due to blackholes, TTL expiry

– Looping packets

– Out of order packets

– Bad for Voice over IP, gaming, video

36

Reducing convergence delay
• Detect failures faster

– Increase beacon frequency

– Link-layer technologies that can detect failures

• Faster flooding

– Flood immediately on a change

– LSP sent with high-priority

• Faster computation

– Faster processors in routers

– Faster algorithms
• e.g. incremental Dijkstra's

– Faster forwarding table update
• e.g. data structures supporting incremental updates

37

Distance vector vs. Link state

38

Distance vector Link state

Knowledge of neighbors' distance
to destinations

Knowledge of every router's links
(entire network graph)

Router has O(# neighbors * #
nodes)

Router has O(# edges)

Messages only between neighbors Messages between all nodes

Trust a peer's routing computation Trust a peer's info
Do routing yourself

Bellman-Ford algorithm Dijkstra's algorithm

Advantages:
Less info has to be stored
Lower computation overhead

Advantages:
Fast to react to changes

Summary

• Intra-AS routing, two major types:

– Distance vector

• Router only know about its neighbors

• RIP protocol
– Original protocol on the ARPANET

– Limited to networks < 16 hops

– Link state

• Full state of network known by each router

• OSPF protocol
– More advanced features: security, multiple paths, multiple

cost metrics, routing areas

 39

