Principles of congestion control

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley J.F

Chapter 3 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - Segment structure
 - Reliable data transfer
 - Flow control
 - Connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

IP best-effort network

- Best-effort model
 - Everybody can send
 - Network does the best it can to deliver
 - Delivery not guaranteed, some traffic may be dropped

Congestion unavoidable

- Multiple packets arrive at same time
 - Router can only transmit one
 - Router has to buffer remaining
- If too many arrive in a short time window
 - Buffer may overflow
 - Router has to choose some packets to drop

What routers do

- Too many packets arrive too quickly

 Which packets should we drop?
- First-in first-out (FIFO) with tail drop
 - Simple, drop the new guy that doesn't fit in your buffer

Queuing disciplines

- Priority queuing
 - Packets marked with priority in header
 - Multiple FIFO queues, one for each priority class
 - Transmit high priority queues first
 - Who is allowed to set priority bit?

Principles of congestion control

Congestion:

- Informally: "too many sources sending too much data too fast for *network* to handle"
- Different from flow control!
- Manifestations:
 - Lost packets (buffer overflow at routers)
 - Long delays (queueing in router buffers)
- A top-10 problem!

Congestion collapse

- Congestion collapse
 - 1986, NSF backbone dropped from 32 kbps to 40 bps
 - Hosts send packets as fast as advertised window allowed
 - When packets dropped, hosts retransmit causing more congestion
 - Goodput = useful bits delivered per unit time
 - Excludes header overhead, retransmissions, etc.

Causes/costs of congestion: scenario 1

- Maximum per-connection throughput: R/2
- $\begin{array}{l} \bigstar \\ \text{Large delays as arrival rate,} \\ \lambda_{\text{in}}, \text{approaches capacity} \end{array}$

Causes/costs of congestion: scenario 2

- One router, *finite* buffers, reliable connection
- Sender retransmission of timed-out packet
 - Application-layer input = application-layer output: $\lambda_{in} = \lambda_{out}$
 - Transport-layer input includes *retransmissions* : $\lambda'_{in} \ge \lambda_{in}$
 - $\lambda'_{in} = offered load$

Congestion scenario 2a: ideal case

Idealization: perfect knowledge

- Sender magically sends only when router buffers available
- No loss, $\lambda'_{in} = \lambda_{in}$
- Hosts won't send faster than R/2

Congestion scenario 2b: known loss

Idealization: known loss

- Packets can be lost, dropped at router due to full buffers
- Sender only resends if packet known to be lost

Congestion scenario 2b: known loss

Idealization: known loss

- Packets can be lost, dropped at router due to full buffers
- Sender only resends if packet known to be lost

Congestion scenario 2c: duplicates

Realistic: *duplicates*

- Packets can be lost, dropped at router due to full buffers
- Sender times out prematurely, sending *two* copies, both of which are delivered

Congestion scenario 2c: duplicates

Realistic: *duplicates*

- Packets can be lost, dropped at router due to full buffers
- Sender times out prematurely, sending *two* copies, both of which are delivered

Costs of congestion:

- More work (retransmissions) for given goodput
- Unneeded retransmissions
 - Link carries multiple copies of packet
 - Decreases goodput

Causes/costs of congestion: scenario 3

- Four senders
- Multihop paths
- Timeout/retransmit

- <u>Q</u>: What happens as λ_{in} and λ'_{in} increase?
- A: As red λ'_{in} increases, all arriving blue pkts at upper queue are dropped, blue throughput → 0

Causes/costs of congestion: scenario 3

Another cost of congestion:

When packet dropped, any upstream transmission capacity used for that packet was wasted!

Approaches to congestion control

Two broad approaches towards congestion control:

End-end:

- No explicit feedback from network
- Congestion inferred from end-system observed loss, delay
- Approach taken by TCP

-Network-assisted:

- Routers provide feedback to end systems
 - Single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - Explicit rate for sender to send at

Router signaling

- Explicit Congestion Notification (ECN)
 - Sender sets TOS IP header bit saying it supports ECN
 - If ECN-aware router is congested, marks another TOS bit
 - TCP receiver sees IP congestion bit, informs sender via TCP segment ECN-Echo (ECE) bit
 - TCP sender confirms receipt of ECE with Congestion
 Window Reduced (CWR) bit

•								_	32 6	Bits-
			1	1	1	1	-	-		
Source port									Destination port	
							S	əqu	enc	e number
Acknowledgement number										
TCP header length		C W R	E C E	U R G	A C K	P S H	R S T	S Y N	F I N	Window size
Checksum									Urgent pointer	
2					0	ptio	ms	(0 c	er m	ore 32-bit words)
								Dat	a (o	optional)

Router signaling

- How does router determine congestion?
 - Checks avg. queue length spanning last busy + idle cycle

- What does TCP sender do with congestion signals?
 - Checks fraction of last window's worth of packets
 - If < 50%, increase congestion window
 - If > 50%, decrease congestion window by 0.875

AIMD principle

- Additive increase, multiplicative decrease (AIMD)
 - Additive increase: On success of last packet, increase number of packets in-flight by one
 - Multiplicative decrease: On loss of packet, divide number of allowed in-flight packets in half

Summary

- Principles of congestion control
 - Too many senders can lead to congestion collapse
 - Links between routers have limited bandwidth
 - Router queues are finite
 - Traffic patterns are unpredictable
 - Goodput = useful bits delivered per unit time
 - Broad approaches
 - End-to-end, no information from routers
 - Network assisted, routers warn when congestion occurring (or about to)
 - AIMD principle
 - Two competing senders achieve efficiency & fairness