
Broadcast, link layer, error detection

Computer Networking: A Top Down Approach
6th edition

Jim Kurose, Keith Ross

Addison-Wesley
Some materials copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

A

B

G

D

E

c

F

1 1 0 1 1 0 0 1 1 0 1 0 0 0 0

1 1 0 1

1 0 0 1

1 1 0 1

1 0 0 0

1 1 0 1

1 0 1 1

1 1 0 1

1 1 0 0

1 1 0 1

1 0 0 0

1 1 0 1

1 0 1

4.1 Introduction

4.2 Virtual circuit and
datagram networks

4.3 What's inside a router

4.4 IP: Internet Protocol

– Datagram format

– IPv4 addressing

– Network Address
Translation (NAT)

– DHCP

– ICMP

– IPv6

– IPsec

4.5 Routing algorithms

 Link state

 Distance vector

 Hierarchical routing

4.6 Routing in the Internet

 RIP

 OSPF

 BGP

4.7 Broadcast and
multicast routing

Chapter 4: outline

2
2

R1

R2

R3 R4

Source
duplication

R1

R2

R3 R4

In-network
duplication

duplicate
creation/transmission duplicate

duplicate

Deliver packets from source to all other nodes

Source duplication is inefficient:

 Source duplication: How does source determine
recipient addresses?

Broadcast routing

3

In-network duplication

• Flooding: When node receives broadcast
packet, sends copy to all neighbors

– Problems: cycles & broadcast storm

• Controlled flooding: Only broadcast packet if it
hasn't been broadcast before

– Option 1: Keep track of packet ids already broadcast

– Option 2: Reverse Path Forwarding (RPF), only
forward packet if it arrived on shortest path
between node and source

• Spanning tree:

– No redundant packets received by any node

4

A

B

G

D

E

c

F

A

B

G

D

E

c

F

(a) Broadcast initiated at A (b) Broadcast initiated at D

Spanning tree

 First construct a spanning tree

 Nodes forward copies only along spanning
tree

5

A

B

G

D

E

c

F
1

2

3

4

5

(a) Stepwise construction of

spanning tree (center: E)

A

B

G

D

E

c

F

(b) Constructed spanning tree

Center node

Each node sends unicast join message to
center node

 Message forwarded until it arrives at a node
already belonging to spanning tree

Spanning tree: creation

6

I think that I shall never see
A graph more lovely than a tree.

A tree whose crucial property
Is loop-free connectivity.

A tree which must be sure to span.
So packets can reach even LAN.
First the Root must be selected

by ID it is elected.
Least cost paths from Root are traced

In the tree these paths are placed.
A mesh is made by folks like me

Then bridges find a spanning tree.

Spanning tree algorithm

• Problem: loops in the network topology

– Radia Perlamn at DEC

– One week to figure out how to join LANs without
loops

– Took one day, then wrote a poem:

7 http://www.youtube.com/watch?v=iE_AbM8ZykI

http://www.youtube.com/watch?v=iE_AbM8ZykI
http://www.youtube.com/watch?v=iE_AbM8ZykI

Chapter 5: Link layer

Our goals:

Understand principles behind link layer
services:

 Error detection, correction

 Sharing a broadcast channel: multiple
access

 Link layer addressing

 Local area networks: Ethernet, VLANs

 Instantiation, implementation of various
link layer technologies

8

Link layer, LANs: outline

5.1 Introduction,
services

5.2 Error detection,
correction

5.3 Multiple access
protocols

5.4 LANs

 Addressing, ARP

 Ethernet

 Switches

 VLANS

5.5 Link virtualization:
MPLS

5.6 Data center
networking

5.7 A day in the life of
a web request

9

Terminology:

 Hosts and routers: nodes

 Communication channels that
connect adjacent nodes along
communication path: links

 Wired links

 Wireless links

 LANs

 Layer-2 packet: frame,
encapsulates datagram

 Data-link layer has responsibility of
transferring datagram from one node
to physically adjacent node over a link

global ISP

Link layer: introduction

10

• Framing, link access:

– Encapsulate datagram into frame, adding header

– Channel access if shared medium

– MAC addresses used in frame headers to identify
source & destination

• Different from IP address!

• Reliable delivery between adjacent nodes

– We learned how to do this already!

– Seldom used on low bit-error links (e.g. fiber)

– Wireless links: high error rates

• Q: Why both link-level and end-end reliability?

Link layer services

11

Flow control:
 Pacing between adjacent sending and receiving nodes

Error detection:
 Errors caused by signal attenuation, noise.

 Receiver detects presence of errors:
• Signals sender for retransmission or drops frame

Error correction:
 Receiver identifies and corrects bit error(s) without

resorting to retransmission

Half-duplex and full-duplex
 With half duplex, nodes at both ends of link can

transmit, but not at same time

Link layer services (more)

12

• In each and every host

• Link layer implemented in
network interface card (NIC)
or on a chip

– Ethernet card, 802.11
card; Ethernet chipset

– Implements link, physical
layer

• Attaches into host's system
buses

• Combination of hardware,
software, firmware

controller

physical
transmission

cpu memory

host
bus
(e.g., PCI)

network adapter
card

application
transport
network

link

link
physical

Where is the link layer implemented?

13

 Sending side:

 Encapsulates datagram
in frame

 Adds error checking bits,
rdt, flow control, etc.

 Receiving side

 Looks for errors, rdt, flow
control, etc

 Extracts datagram,
passes to upper layer at
receiving side

controller controller

sending host receiving host

datagram datagram

datagram

frame

Adaptors communicating

14

Error detection

• Error detection
– Parity checking

– Checksum

– Cyclic Redundancy Check

• Error correction
– Retransmission

– Forward error correction (ECC)

• Hamming codes, Reed-Solomon codes, low-density
parity check code (LDPC)

• Examples: DVDs, WiMax, 802.11n

15

Error detection

• Basic idea: add redundant data

– Simple scheme:

• Send two copies of data

• Compare copies, any differences implies error

• High overhead, 2n bits to send n bits data

– More complex schemes:

• Strong error detection with k redundant bits

• k << n

• e.g. Ethernet frame with 12K bits, 32-bit CRC

16

Parity checking

• One dimensional parity

– Set parity bit so number of 1s odd or even

–Detects all single bit errors

– Example (7 bits data, 1 bit data):

17

data even parity odd parity

0010 101 0010 1011 0010 1010

1100 110 1100 1100 1100 1101

0000 000 0000 0000 0000 0001

Parity checking

• Two-dimensional parity

–Arrange bytes in a table

–Parity over rows and over columns

–Catches all 1-3 bit errors

–Catches most 4 bit errors

18

Checksum

• Internet checksum algorithm

–Add up 16-bit words and transmit result

–Not used in link-layer

• Used in higher layers like TCP and UDP

–Advantages:

• Small # of redundant bits

• Easy to implement

–Disadvantages:

• Weak protection

19

Checksum

• Algorithm:

–Add data using one's complement

–Checksum is complement of summation

–One's complement:

• Negative #'s are bit complement of positive

• Carry out from most sig. bit, increment by 1

20

1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

+ 1 1 1 1 1 0 1 0

0 0 0 0 1 0 0 1

+ 1

0 0 0 0 1 0 1 0

15

+ -5

10

Checksum algorithm

21

u_short cksum(u_short *buf, int count)
{
 register u_long sum = 0;
 while (count--)
 {
 sum += *buf++;
 if (sum & 0xFFFF0000)
 {
 /* carry occurred so wrap around */
 sum &= 0xFFFF;
 sum++;
 }
 }
 return ~(sum & 0xFFFF);
}

Cyclic redundancy check

• CRC (cyclic redundancy check)

– Maximize detection while minimizing redundancy

– (n+1) bit message = n degree polynomial

– Sender/receiver agree on divisor polynomial C(x)

• C(x) is polynomial of degree k (k << n)

– Extend message M(x) to include extra bits that
make it evenly divisible by C(x)

22

Message (x) polynomial M(x)

1001 1010 1x7 + 0x6 + 0x5 + 1x4 + 1x3 + 0x2 + 1x1 + 0x0

= x7 + x4 + x3 + x1

Common CRC polynomials

23

Name Used in C(x) Generator

CRC-8 ATM x8 + x2 + x1 + 1 1 0000 0111

CRC-10 ATM x10 + x9 + x5 + x4 + x1 + 1 110 0011 0011

CRC-12 Telecom systems x12 + x11 + x3 + x2 + x1 + 1 1 1000 0000 1111

CRC-16 USB, Bisync x16 + x15 + x2 + 1 1 1000 0000 0000 0011

CRC-CCITT Bluetooth, X.25, SD, HDLC x16 + x12 + x5 + 1 1 0001 0000 0010 0001

CRC-32 Ethernet, SATA, MPEG-2,
Gzip, PKZIP, PNG, ATM

x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1

1 0000 0100 1100 0001
0001 1101 1011 0111

• CRC will detect:
– All single-bit errors, if xk and x0 are nonzero

– All double-bit errors, if C(x) has a factor with 3+ terms

– Any odd number of errors, if C(x) contains the factor (x+1)

– Any burst error, if burst is less than k bits

Generating a CRC

• Adding a CRC to a message:

–Assume:

• Message M(x) of (n+1) bits

• Generator polynomial C(x) of degree k

–Add k zeros to right side of M(x)

– Find remainder by dividing by C(x)

–Replace k zeros on right of M(X) with
remainder

24

Example CRC generation

25

Message 1001 1010 M(x) = x7 + x4 + x3 + x1

Generator 1101 C(x) = x3 + x2 + 1

1 1 0 1 1 0 0 1 1 0 1 0 0 0 0

1 1 0 1

1 0 0 1

1 1 0 1

1 0 0 0

1 1 0 1

1 0 1 1

1 1 0 1

1 1 0 0

1 1 0 1

1 0 0 0

1 1 0 1

1 0 1

• Repeatedly XOR generator
with bits from augmented
M(x)

• Final remainder is CRC

• Final message:

1001 1010 101

Checking a CRC

• Checking a received message:

–Receiver gets M(x) + calculated CRC

–Divides by agreed C(x)

– If remainder = 0, no error detected

26

Example uncorrupted message

27

Message 1001 1010 M(x) = x7 + x4 + x3 + x1

Generator 1101 C(x) = x3 + x2 + 1

CRC 101

1 1 0 1 1 0 0 1 1 0 1 0 1 0 1

1 1 0 1

1 0 0 1

1 1 0 1

1 0 0 0

1 1 0 1

1 0 1 1

1 1 0 1

1 1 0 0

1 1 0 1

1 1 0 1

1 1 0 1

0

• Repeatedly XOR generator
with bits from message +
CRC

• Final remainder should be

zero

Example corrupted message

28

1 1 0 1 1 0 0 1 1 0 0 0 1 0 1

1 1 0 1

1 0 0 1

1 1 0 1

1 0 0 0

1 1 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1 1 0 1

1 1 1 0

1 1 0 1

1 1 1

Message 1001 1010 M(x) = x7 + x4 + x3 + x1

Generator 1101 C(x) = x3 + x2 + 1

CRC 101

• Repeatedly XOR generator
with bits from message +
CRC

• Final remainder should be

zero

Error detection rate

29

Type Length Error detection

checksum 8-bit 99.6094%

checksum 16-bit 99.9985%

CRC 32-bit 99.9999%

Summary

• Broadcast routing

– Sending message to everybody

– Needed for various protocols

• e.g. Gnutella, OSPF, DHCP

• Link-layer

– Layer-2, our last stop on our journey

– What happens on link between hosts

• Error detection/correction

– Parity

– Checksum

– CRC
30

