Ethernet and WiFi

THERE ARE FEW FORCES MORE POWERFUL THAN GEEKS DESPERATELY TRYING TO GET INTERNET IN A NEW APARTMENT.

http://xkcd.com/466/

CSCI 466: Networks • Keith Vertanen • Fall 2011

Overview

- Multiple access networks
 - Ethernet
 - Long history
 - Dominant wired technology
 - -802.11
 - Dominant wireless technology

Classic Ethernet

Ethernet

- luminferous ether through which electromagnetic radiation once thought to propagate
- Carrier Sense, Multiple Access with Collision Detection (CSMA/CD)
- IEEE 802.3

Robert Metcalfe, coinventor of Ethernet

Classic Ethernet

Ethernet

- Xerox Ethernet standardized as IEEE 802.3 in 1983
- Xerox not interested in commercializing
- Metcalfe leaves and forms 3Com

Douglas K. Smith and Robert C. Alexander

Ethernet connectivity

Shared medium

- All hosts hear all traffic on cable
- Hosts tapped the cable
- 2500m maximum length
- May include repeaters amplifying signal
- 10 Mbps bandwidth

Classic Ethernet cabling

Thick Ethernet cable (yellow), 10BASE-5 transceivers, cable tapping tool (orange), 500m maximum length.

Cable after being "vampire" tapped.

Thin Ethernet cable (10BASE2) with BNC T-connector, 185m maximum length.

Ethernet addressing

- Media Access Control address (MAC)
 - 48-bit globally unique address
 - 281,474,976,710,656 possible addresses
 - Should last till 2100
 - e.g. 01:23:45:67:89:ab

Address of all 1's is broadcast

FF:FF:FF:FF:FF

Ethernet frame format

- Frame format
 - Manchester encoded
 - Preamble products 10-Mhz square wave
 - Allows clock synch between sender & receiver
 - Pad to at least 64-bytes (collision detection)

Ethernet receivers

- Hosts listens to medium
 - Deliver to host:
 - Any frame with host's MAC address
 - All broadcast frames (all 1's)
 - Multicast frames (if subscribed to)
 - Or all frames if in promiscuous mode

MAC sublayer

- Media Access Control (MAC) sublayer
 - Who goes next on a shared medium
 - Ethernet hosts can sense if medium in use
 - Algorithm for sending data:
 - 1. Is medium idle? If not, wait.
 - 2. Start transmitting data, listen for collision.
 - 3. If collision detected, transmit 32-bit jamming sequence. Stop transmitting and go to backoff procedure.

Backoff procedure

- Binary exponential backoff
 - First collision
 - Wait 0-1 timeslots (chosen at random)
 - Second collision
 - Wait 0-3 timeslots
 - In general, ith collision
 - Wait a random number of timeslots between 0 and 2ⁱ -1 (max of 1023 slots)
 - Give up after 16 or so retries
 - Timeslot = 51.2 μ s

Switched Ethernet

- Long single cable
 - Hard to find breaks or loose connections
- Different wiring pattern
 - Each host wired straight to hub
 - Hub simply connected all wires together
 - Using existing office twisted pair phone lines

Switched Ethernet

Hubs

- Made network easier to manage
- But did not address capacity problem

Switches

- High-speed backplane connecting all ports
- Only output frame to destination port
- Isolates traffic, no collisions, better security

Fast Ethernet

- Fast Ethernet
 - IEEE 802.3u
 - Keep all the classic Ethernet frame formats, etc.
 - Reduce the bit time from 100 nsec to 10nsec
 - 100 Mbps
 - No more multidrop cables or vampire taps

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Gigabit Ethernet

- Gigabit Ethernet
 - IEEE 802.3ab
 - 1000 Mbps
 - Unacknowledged datagram service
 - Addition of flow control
 - Unofficial support for jumbo frames
 - Up to 9KB (instead of limit of 1500 bytes)

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Even faster

- 10-Gigabit Ethernet
 - 1000x faster than original Ethernet
 - Inside data centers, long haul trunks

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85μ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3 μ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5µ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

- 40 and 100-Gigabit Ethernet
 - Recently ratified and starting to be deployed

Ethernet retrospective

- Why so popular?
 - Easy to administer, no routing or config tables
 - Cheap hardware and wiring
 - Plays nice with TCP/IP
 - Ethernet and IP are connectionless protocols
 - Alternates like ATM were not
 - Speed increased by order of magnitude periodically without throwing away existing infrastructure
 - Borrowed good ideas from other (failed) networking technologies (FDDI, Fiber Channel)

Wireless

- Shared medium using wireless
 - Bit errors more prevalent than wired
 - Limits on transmit power
 - Battery life, government regulation
 - Difficult to transmit and listen for collisions
 - Undirected signal
 - Interference
 - Security

Wireless technologies

	Link length	Data rate	Uses
RFID	10 m	Very low	Smart cards, pet implants, passports, library books
Bluetooth 802.15.1	10 m	2 Mbps	Link peripheral to computer (e.g. headset, mouse, keyboard).
Wi-Fi 802.11	100 m	11-600 Mbps	Link computer to a wired base station.
3G Cellular	10 km	Hundreds of kbps (per connection)	Link mobile device to wired tower.
Wi-MAX 802.16	50 km	144 Mbps	Last-mile broadband to home. Mobile broadband.

Wireless transmission

- Spread spectrum
 - A way to share the medium
 - Support varying numbers of users
 - Support bursty traffic (e.g. web surfing)
 - Frequency hopping
 - Original military's attempt to avoid jamming
 - Pseudorandom sequence of frequencies
 - Unlikely two transmitters using same sequence

Wireless transmission

- Spread spectrum
 - Direct sequence
 - Transmit same bit on *n* different frequencies
 - Spread signal across n times wider frequency band
 - XOR signal bit with n pseudorandom bits

Wireless topology

- Base station topology
 - Typically all clients talk to base station
 - No direct communication between clients

Wireless topology

- Ad hoc / mesh topology
 - Nodes are peers
 - No special base station
 - Advantages:
 - More fault tolerant
 - Extends range
 - Disadvantages:
 - Nodes are more complex
 - Nodes may be asked to expend limited resources (e.g. power)

One Laptop per Child, uses 802.11s mesh draft standard.

802.11 Wi-Fi

Standard	Released	Max bit rate (shared)	Frequency band	Indoor range
802.11	1997	2 Mbps	2.4 GHz	20 m
802.11a	1999	54 Mbps	5 GHz	35 m
802.11b	1999	11 Mbps	2.4 GHz	38 m
802.11g	2003	54 Mbps	2.4 GHz	38 m
802.11n	2009	600 Mbps	2.4 GHz 5 GHz	70 m

- Operate in license exempt bands
- More absorption at high frequencies (5 GHz)
- All support lower bit rates
 - Switch between modulation techniques & error correction codes
- 802.11n, multiple antennas
 - MIMO (Multiple Input Multiple Output)

Summary

Wired Ethernet

- Long history and widely adopted
- Used in LANs, datacenters, etc.
- Order of magnitude bit rate increase every few years
- Careful attention to backwards compatibility

802.11 Wi-Fi

- Widely adopted short-range wireless technology
- Typically via fixed access point
- Also can be used ad hoc between clients