Reliable transmission

Getting connected thus far

* Physical connectivity
Twisted pair—__ / B b on L :
i,’—\‘/

* Aggregating bits into frames

Overhead j&——— Payload

8 8 8 8 8 16
o

S | £ | 5 | Header | & Body % 2 lcre| 9rows

(7)) (7)))] ()] L

90 columns

* Detecting errors in frames

Message 1001 1010 M(x) = x” + x* + x3 + x!
Generator 1101 Cx)=x3+x*+1

CRC 101

Data link layer

Sending machine

Packet

Receiving machine

Packet

Network layer

/

—
Frame

Header | Payload field

Trailer

N

Header | Payload field

Trailer Data Ilnk Iayer

J

Physical layer

Application

Network

Link

Computer

4+— Operating System

Driver

Network Interface

________ _— Card(NIC)

Cable (medium)

Link layer

1) Well-defined service interface
to network layer

2) May deal with transmission
errors

3) May provide flow control,
don't swamp the receiver

Reliable transmission

* Networks need reliable delivery

— Forward error-correction
* High overhead
e Can only recover from some errors

— Discard frames with bad checksum / CRC
— May occur at link layer (e.g. G.hn, powerline net)

— Often at higher layer (e.g. TCP at transport layer)
* Basic algorithms and concepts the same

Reliable transmission

* Main mechanisms for reliable delivery:
— Acknowledgements (ACK)

e Control frame, informs peer frame(s) received okay

» Different types
— Selective acknowledgement, specifies received frame

— Cumulative acknowledgement, received this frame and all
previous

— Negative acknowledgement (NACK), frame was corrupt or out
of buffer space

— Timeouts
* Only wait so long for ACK (frame or ACK may be MIA)

Reliable transmission

* Automatic repeat request (ARQ) algorithm

— Sender waits for acknowledgement (ACK) before
advancing

— If no ACK after timeout value, resend frame

— Three main ARQ algorithms
e Stop-and-wait
e Concurrent logical channels
* Sliding window

Goals of ARQ

e Reliable transmission
* Preserve order

— Delivers data in same order to receiver's network
layer that sender's network layer intended

* Flow control
— Receiver can throttle sender

— Sender can't overrun processing/buffer capacity
of the receiver

Stop-and-wait

* Stop-and-wait algorithm:
1. Send a frame, start a timer
2. Wait for an ACK
3. If timeout before ACK, goto 1
4. |If ACK, get next frame, goto 1

Stop-and-wait: Success

(a) Sender Receiver
3
O p—
/ g - RTT

)

=

-
/v

How long a timeout
should we use?

Stop-and-wait: Lost frame

(b) Sender Receiver
_%Y

5 . -
Sender 3 Receiver oblivious to
eventually £ lost frame.
times out and
resends the B Frame
frame. 'qg:

£ cK

= A

10

Stop-and-wait: Corrupt frame

Sender
eventually
times out and
resends the
frame.

(b) Sender

Timeout

&,

Timeout

— F"arne

Receiver

Receiver knows frame
is corrupt (bad CRC or
checksum)

Just waits for sender
to timeout

11

Stop-and-wait: Lost ACK

Sender never
gets the first
ACK. Eventually
times out and
resends that
frame.

(¢) Sender

Timeout

Timeout

Receiver

Receiver got frame
and ACK'd it.

Get another frame, so
ACK'd that as well.

12

Stop-and-wait: Delayed frame

Sender didn't
get ACK before
timeout, so
resends the
frame.

Sender gets

duplicate ACKs.

(d)

Sender

Timeout

Timeout

Receiver

Receiver got frame
and ACK'd it.

Got another frame, so
ACK'd that as well.

13

Stop-and-wait
—

(a) Sender Receiver (c) Sender Receiver
%\ _ Frame
ol & S Problem 1:
E E pCK = pCK . .
= Receiver thinks the
~—N retransmission is a
g \OK new frame,
= .
i corrupting data
| | passed up to
(b) Sender Receiver ‘ (d) Sender Receiver
1 network layer.
%
£
._
=%
I

a) ACK received before timeout ~ ¢) ACKis lost
b) original frame is lost d) timeout triggered too soon

Stop-and-wait

Solution 1.
Use 1-bit sequence
number.

(a)

Time

Receiver can now
determine if received
frame is a duplicate.

Sender Receiver

B Time

-

e
% /s

Timeout

Sender Receiver

Timeout

w\
‘y

Sender Receiver

Timeout

%

IS
‘%\4'

()

(d)

Sender Receiver

Timeout

Timeout

- F’Gme‘
}
- Wk\

Ay

Sender Receiver

Timeout

Timeout

http://www.net-seal.net/animations.php?aid=37

15

Stop-and-wait

* Problem 2: Inefficient use of bandwidth

* Only one frame in flight

 Example 1:
— 1.5 Mbps link, 45 ms RTT, 1K frame size
— 1024 bytes x (8 bits / byte) / 0.045 s = 182 kbps

— delay x bandwidth product:
» 0.045 s x 1.5 Mbps = 67500 bits x (1 byte / 8 bits) = 8.4K

 Example 2:
— 50 kbps satellite link, 500 ms RTT, 1K frame size
— 1024 bytes x (8 bits / byte) / 0.500 s = 16.4 kbps
» 0.5 s x 50 kbps = 25000 bits x (1 byte / 8 bits) = 3.1K

16

Concurrent logical channels

* Concurrent logical channels
— Allows more efficient use of bandwidth
— Use stop-and-wait on multiple logical channels

Time

eceiver
Frame

: \\\&@L\\\

£ K 5

[pC g " Fra"]e

= e .,
oK " e
3

channel 1 channel 2 channel 3 channel 4

17

Concurrent logical channels

* Concurrent logical channels
— Used in ARPANET

— Different processes can be allocated different
numbers of channels

— Potentially can use full bandwidth
— Problems:

* A process might not fully utilize its channel

 Splitting a process' communication across multiple
channels may not maintain data ordering

18

Sliding window

* Sliding window protocol

— Better solution to bandwidth utilization problem
e Put multiple frames in flight
e Best known algorithm in networking
* Several variations on this idea
 Usedin TCP —

Receiver

Time

19

Sliding window: Go-back-n

e Sender:

— Send window size
* Sender can send this many frames without an ACK
e Each frame has sequence number

— Timeout: sends lowest unacknowledged frame
and all subsequent frames

* Receiver:
— Receive window size of 1
— ACKs each good frame (or highest good frame)
— Expects certain sequence number, drops all others

20

Go-back-n

<-— Timeout interval———

o| [1] 2] [3] [4] |5 7| 8] |2 4 6| [7] 8] |9
4
/ ‘\/, ,V"o, / ,/
3‘9/ Ry N/ *(.b/ Ny \{.‘b/

™ T
/ /
ANAN
0

/
7/
11l E D D D D D D213l [4]T[5] 6] 7] [s

Error Frames discarded by data link layer

Time ————

(a)

* Problem:

— Go-back-n wastes bandwidth re-sending frames
that may have been received okay

http://www.eecis.udel.edu/~amer/450/TransportApplets/GBN/GBNindex.html

http://www.net-seal.net/animations.php?aid=38

21

Sliding window: Selective repeat

e Selective repeat

— Sender:
 Tracks which frames have been ACK'd

* Unacknowledged frames must remain in buffer until
acknowledged

* Timer(s) track if frame needs resending

— Receiver:

 Hold out-of-order frames until in order section can be
passed up to network layer

http://www.eecis.udel.edu/~amer/450/TransportApplets/SR/SRindex.html

http://www.net-seal.net/animations.php?aid=39

22

Other ARQ features

* Negative acknowledgement (NAK)
— Receiver got the frame but error detected
— Stimulates retransmission
e Avoiding waiting for timeout
— But adds complexity, timeouts can handle
* Piggybacking
— Often two-way data exchange
— Use ACK to both acknowledge and send data
— Wait a bit hoping for data from network layer

23

Window sizes and sequence #'s

Stop-and-wait 1 1

Go-back-n N 1

Selective repeat N M
(normally N=M)

e Selective repeat
— Normally window sizes same N=M
— Sequence numbers have a max: MaxSegNum

— Send window size < (MaxSeqgNum +1) /2

24

Data link protocols

 Computer networks built-up from point-to-
point links

 Two example data link protocols:

— Packet over SONET

e Optical connectivity in WANSs
 Connect routers in different locations of an ISP

— ADSL

* Local loop of the telephone network
* End-user last-mile connectivity

25

ADSL

 Asymmetric digital subscriber loop (ADSL)
— Last mile connectivity at Mbps speeds

— Uses normal plain old telephone service (POTS)

* Customer hooks DSL modem to phone line

e Connects to "dee-slam" in the telephone local office

P IP DSLAM
DSL
PPP /modem PPP /(with router)
 FC AAL5 AAL5)
Ethernet Link T
ATM ATM p int t
: nternet)
& Ethernet ADSL L|§§§' ADSL W,
\—d’/ %__‘_—/ b—;i B
\ L J
) Y
Customer’s home ISP’s office

26

Power

P DSL IP DSLAM
° PPP /modem PPP /(with router)
* Sighal modulated D ol L
ATM ATM :‘"1 Internet)
ADSL /"Iggg' ADSL)
— Orthogonal frequency ° L T
. . I . . CustomeYr's home ISP'sYofﬂce
division multiplexing
256 4-kHz Channels
25 L 1100 kHz
Upstream Downstream
50
40
a 30
e}
=
20
10
0 | | | |
1000 2000 3000 4000 5000 6000
Meters

ADSL: Physical layer

0

-
Voice

27

ADSL: Data link layer

T PPP e mzc?:m PPP T s (V-’iEf)f?lr_cﬁl'\tAer)
* AT IVI e P Ethernet AALS AALS Link — ‘
_ ATM Local ATM (:J Internet
W E:gernet ADSL L loop ADSL ~—
N ¥ ~—
— Asynchronous Transfer ° T)
IVI O d e CustomeYr's home ISP's(ofﬂce

— Small fixed length cells
* 53 bytes, 48 payload, 5 header
* Europe wanted 32-bytes, US wanted 64-bytes

— Asynchronous, cells not always sent (unlike
SONET)

“ATM was...launched with incredible hype. It promised a network technology that would solve
the world's telecommunications problems by merging voice, data, cable television,
telegraph, carrier pigeon, tin cans connected by strings, tom toms, and everything else...”

-Andrew Tanenbaum, Computer Networks 5t edition
28

ADSL: Data link layer

* AALS

— ATM Adaptation Layer 5 *

P IP DSLAM
DSL
PPP # modem PPP # (with router)
. FC AALS5 AALS B
Ethernet Link T
E' ATM ATM y
= Local (Internet
== Ethernet ADSL ADSL .
i = Pz / loop 4/ —
~— K T . J
J L J
Y (
ISP’s office

Customer’'s home

— Map data into sequence of ATM cells

— Pads out to 48 bytes
— No address, each ATM has a virtual circuit ID

— Frame format:

Bytes

1or2 Variable 0to 47 2 2 4
PPP protocol PPP payload Pad Unused Length CRC
Y Y /
AALS trailer

AALS payload

29

ADSL: Data link layer

P P DSLAM
DSL
PPP /modem PPP /(with router)
. FC AAL5 AAL5
[) Ethernet Link P

(' Internet)
== Ethernet ADSL '-|°°a| ADSL .),
= - loop o

N ¥ - N

L) L J

Y (
ISP’s office

— Point-to-point protocol

over ATM
— PPP protocol and payload placed in AALS payload

1or2 Variable 0to 47 2 2 4

CRC

Bytes
Pad Unused l Length ‘

L]
— Protocol field:
ro OCO e ° PPP protocol ‘ PPP payload
! AAL5YtraiIer

* I'm an IP packet
* I'm a link control message (LCP)

— PPP framing & CRC not needed
* Already provided by ATM/AAL5

30

Summary

* Network needs:
— Reliable delivery

— In order delivery

— Flow control

* Building blocks:
— Acknowledgements (ACKs), timeouts

— Algorithms: stop-and-wait, go-back-n, selective
repeat

* Data link layer example: ADSL

31

