Reliable transmission
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Reliable transmission

* Networks need reliable delivery

— Forward error-correction
* High overhead
e Can only recover from some errors

— Discard frames with bad checksum / CRC
— May occur at link layer (e.g. G.hn, powerline net)

— Often at higher layer (e.g. TCP at transport layer)
* Basic algorithms and concepts the same



Reliable transmission

* Main mechanisms for reliable delivery:
— Acknowledgements (ACK)

e Control frame, informs peer frame(s) received okay

» Different types
— Selective acknowledgement, specifies received frame

— Cumulative acknowledgement, received this frame and all
previous

— Negative acknowledgement (NACK), frame was corrupt or out
of buffer space

— Timeouts
* Only wait so long for ACK (frame or ACK may be MIA)



Reliable transmission

* Automatic repeat request (ARQ) algorithm

— Sender waits for acknowledgement (ACK) before
advancing

— If no ACK after timeout value, resend frame

— Three main ARQ algorithms
e Stop-and-wait
e Concurrent logical channels
* Sliding window



Goals of ARQ

e Reliable transmission
* Preserve order

— Delivers data in same order to receiver's network
layer that sender's network layer intended

* Flow control
— Receiver can throttle sender

— Sender can't overrun processing/buffer capacity
of the receiver



Stop-and-wait

* Stop-and-wait algorithm:
1. Send a frame, start a timer
2. Wait for an ACK
3. If timeout before ACK, goto 1
4. |If ACK, get next frame, goto 1



Stop-and-wait: Success
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Stop-and-wait: Lost frame
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Stop-and-wait: Corrupt frame

Sender
eventually
times out and
resends the
frame.

(b) Sender
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Stop-and-wait: Lost ACK

Sender never
gets the first
ACK. Eventually
times out and
resends that
frame.
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and ACK'd it.

Get another frame, so
ACK'd that as well.
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Stop-and-wait: Delayed frame

Sender didn't
get ACK before
timeout, so
resends the
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Sender gets
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Stop-and-wait
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Stop-and-wait

Solution 1.
Use 1-bit sequence
number.
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frame is a duplicate.
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http://www.net-seal.net/animations.php?aid=37
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Stop-and-wait

* Problem 2: Inefficient use of bandwidth

* Only one frame in flight

 Example 1:
— 1.5 Mbps link, 45 ms RTT, 1K frame size
— 1024 bytes x (8 bits / byte) / 0.045 s = 182 kbps

— delay x bandwidth product:
» 0.045 s x 1.5 Mbps = 67500 bits x (1 byte / 8 bits) = 8.4K

 Example 2:
— 50 kbps satellite link, 500 ms RTT, 1K frame size
— 1024 bytes x (8 bits / byte) / 0.500 s = 16.4 kbps
» 0.5 s x 50 kbps = 25000 bits x (1 byte / 8 bits) = 3.1K
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Concurrent logical channels

* Concurrent logical channels
— Allows more efficient use of bandwidth
— Use stop-and-wait on multiple logical channels
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Concurrent logical channels

* Concurrent logical channels
— Used in ARPANET

— Different processes can be allocated different
numbers of channels

— Potentially can use full bandwidth
— Problems:

* A process might not fully utilize its channel

 Splitting a process' communication across multiple
channels may not maintain data ordering
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Sliding window

* Sliding window protocol

— Better solution to bandwidth utilization problem
e Put multiple frames in flight
e Best known algorithm in networking
* Several variations on this idea
 Usedin TCP —

Receiver

Time
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Sliding window: Go-back-n

e Sender:

— Send window size
* Sender can send this many frames without an ACK
e Each frame has sequence number

— Timeout: sends lowest unacknowledged frame
and all subsequent frames

* Receiver:
— Receive window size of 1
— ACKs each good frame (or highest good frame)
— Expects certain sequence number, drops all others
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Go-back-n
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* Problem:

— Go-back-n wastes bandwidth re-sending frames
that may have been received okay

http://www.eecis.udel.edu/~amer/450/TransportApplets/GBN/GBNindex.html

http://www.net-seal.net/animations.php?aid=38
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Sliding window: Selective repeat

e Selective repeat

— Sender:
 Tracks which frames have been ACK'd

* Unacknowledged frames must remain in buffer until
acknowledged

* Timer(s) track if frame needs resending

— Receiver:

 Hold out-of-order frames until in order section can be
passed up to network layer

http://www.eecis.udel.edu/~amer/450/TransportApplets/SR/SRindex.html

http://www.net-seal.net/animations.php?aid=39
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Other ARQ features

* Negative acknowledgement (NAK)
— Receiver got the frame but error detected
— Stimulates retransmission
e Avoiding waiting for timeout
— But adds complexity, timeouts can handle
* Piggybacking
— Often two-way data exchange
— Use ACK to both acknowledge and send data
— Wait a bit hoping for data from network layer
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Window sizes and sequence #'s

Stop-and-wait 1 1

Go-back-n N 1

Selective repeat N M
(normally N=M)

e Selective repeat
— Normally window sizes same N=M
— Sequence numbers have a max: MaxSegNum

— Send window size < (MaxSeqgNum +1) /2
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Data link protocols

 Computer networks built-up from point-to-
point links

 Two example data link protocols:

— Packet over SONET

e Optical connectivity in WANSs
 Connect routers in different locations of an ISP

— ADSL

* Local loop of the telephone network
* End-user last-mile connectivity
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ADSL

 Asymmetric digital subscriber loop (ADSL)
— Last mile connectivity at Mbps speeds

— Uses normal plain old telephone service (POTS)

* Customer hooks DSL modem to phone line

e Connects to "dee-slam" in the telephone local office
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Power
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ADSL: Data link layer

T PPP e mzc?:m PPP T s (V-’iEf)f?lr_cﬁl'\tAer)
* AT IVI e P Ethernet AALS AALS Link — ‘
_ ATM Local ATM (:J Internet
W E:gernet ADSL L loop ADSL ~—
N ¥ ~—
— Asynchronous Transfer ° T )
IVI O d e CustomeYr's home ISP's(ofﬂce

— Small fixed length cells
* 53 bytes, 48 payload, 5 header
* Europe wanted 32-bytes, US wanted 64-bytes

— Asynchronous, cells not always sent (unlike
SONET)

“ATM was...launched with incredible hype. It promised a network technology that would solve
the world's telecommunications problems by merging voice, data, cable television,
telegraph, carrier pigeon, tin cans connected by strings, tom toms, and everything else...”

-Andrew Tanenbaum, Computer Networks 5t edition
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ADSL: Data link layer

* AALS

— ATM Adaptation Layer 5 *

P IP DSLAM
DSL
PPP # modem PPP # (with router)
. FC AALS5 AALS B
Ethernet Link T
E' ATM ATM y
= Local ( Internet
== Ethernet ADSL ADSL .
i = Pz / loop 4/ —
~— K T . J
J L J
Y (
ISP’s office

Customer’'s home

— Map data into sequence of ATM cells

— Pads out to 48 bytes
— No address, each ATM has a virtual circuit ID

— Frame format:

Bytes

1or2 Variable 0to 47 2 2 4
PPP protocol PPP payload Pad Unused Length CRC
Y Y /
AALS trailer

AALS payload
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ADSL: Data link layer

P P DSLAM
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— Point-to-point protocol

over ATM
— PPP protocol and payload placed in AALS payload

1or2 Variable 0to 47 2 2 4

CRC

Bytes
Pad Unused l Length ‘

L]
— Protocol field:
ro OCO e ° PPP protocol ‘ PPP payload
! AAL5YtraiIer

* I'm an IP packet
* I'm a link control message (LCP)

— PPP framing & CRC not needed
* Already provided by ATM/AAL5
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Summary

* Network needs:
— Reliable delivery

— In order delivery

— Flow control

* Building blocks:
— Acknowledgements (ACKs), timeouts

— Algorithms: stop-and-wait, go-back-n, selective
repeat

* Data link layer example: ADSL
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