Overlay networks and P2P

Overview

- Overlay networks
 - Logical network running on top of physical network
 - Support alternate routing strategies
 - Experimental protocols
- Peer-to-peer (P2P) networks
 - Directory-based
 - Unstructured
 - Structured

Internet ossification

The Internet

- Originally so researchers to experiment with packet switching
- Now commercial interests dominate
- Massive size, can't change software in all the routers
- How to investigate and deploy new features?
 - Migration to IPv6
 - Multicast routing
 - Virtual private networks
 - Optimizing routing between small set of hosts
 - New services such as peer-to-peer

Overlay network

Application level focus

Overlay networks

- Many logical networks may coexist
 - Over same underlying network
 - Each providing its own particular service
- Nodes in overlay network
 - Often end hosts
 - Act as a traffic forwarding agent
 - Provide a service such as file sharing
- Which nodes are in the network?
 - Party providing the service (e.g. Akamai)
 - Collection of end users (e.g. P2P sharing)

Overlay networks

- Logical network built on top of a physical network
 - Overlay link is a connection between two nodes
 - Link makes sense from standpoint of the logical network
 - Actual packets on overlay link may transit a series of physical links

Internet started as overlay network of the old telephone

network

Overlay network

Physical network

Using overlays for routing

- Routing overlay
 - Purely to support alternative routing strategy
 - No application-level processing at overlay nodes
- Examples:
 - IPv6
 - Virtual Private Network (VPN)
 - Mobile IP
 - Multicast
- Relies on creating "tunnels" through the network

IP tunneling

IP tunnel

- A virtual point-to-point link
- A packet gets encapsulated inside another packet

Deploying IPv6

- 6-Bone
 - Overlay network to support IPv6
 - Tunnels IPv6 packets over routers not supporting IPv6

Creating private networks

- Virtual Private Networks (VPNs)
 - A secure private network running over the public Internet
 - Equip each office with a firewall that creates tunnels between all pairs of offices
 - Roaming users can connect to firewall using VPN software

Routing to mobile hosts

Mobile IP

- Route packets to a roaming mobile host
- Home agent tunnels traffic to foreign agent

Delivering to multiple hosts

Multicast

Deliver same content to many hosts avoiding redundancy

IP multicast

- Special addressing, forwarding, and routing
- Not widely deployed, MBone tunneled between nodes

End-system multicast

End-system multicast

- IP multicast not widely deployed, have hosts do it instead
- End hosts form their own multicast tree
- Hosts help forward data onto to others in multicast group

Network with link costs.

Naïve delivery using unicast.

Multicast with router support.

End-system multicast, C forwards traffic on to D.

Improving performance

- Resilient Overlay Networks (RON)
 - Build overlay networks between small set of nodes (~10s)
 - Monitor latency, bandwidth and drop probability between every pair of nodes
 - Use data to select optimal route between nodes in set

RON performance

- IP routing does not adapt to congestion
 - RON can reroute when path is congested
- IP routing is sometimes slow to converge
 - RON can quickly direct traffic around problem
- IP routing depends on AS policies
 - RON can pick best performing path ignoring policies
- But RON has some drawbacks:
 - Packets may go through more hops, loading hosts, increasing costs
 - Probing causes network overhead

Overlay services: P2P

- Peer-to-peer (P2P) networks
 - Community of users pooling resources (storage space, bandwidth, CPU) to provide a service
 - e.g. Sharing MP3 files, Skype
 - Nodes are hosts willing to share, links are tunnels used to transport objects of interest

Types:

- Centralized P2P central server for indexing
- Pure P2P all peers are equals
- Hybrid P2P some peers are supernodes

P2P: Napster

- Napster: the rise
 - Created by Shawn Fanning
 - Christmas break his freshmen year at college
 - Allows people to search and share MP3 files
 - January 1999, Napster version 1.0
 - May 1999
 - Company founded
 - Shawn drops out of school
 - September 1999, first lawsuits
 - No such thing as bad publicity
 - By 2000, 80 million users

P2P: Napster

- Napster: the fall
 - December 1999
 - RIAA files lawsuit
 - Metallica's "I Disappear" circulates
 - Before official release, starts getting radio play
 - 2000 band files a lawsuit
 - July 2001, shutdown due to lawsuits
 - 2002, relaunched as a paid service
 - Major record labels not keen to license
 - Files bankruptcy
 - Gave rise to many P2P alternatives
 - Forced industry out of stone age
 - iTunes

Napster technology

- User installs software
 - Registers name, password, local directory with music
- Client contacts central Napster server
 - Connects via TCP
 - Provides list of music in user's directory
 - Napster updates its database
- Client searches for music
 - Napster identifies currently online client with file
 - Provides IP addresses so client can download directly

Napster technology

- Central server continually updated
 - Easy to track music currently available and from what peer
 - Good source to prove copyright infringement
 - Single point of failure, performance bottleneck
- Peer-to-peer transfer
 - Key idea of P2P: heavy lifting done between peers
 - No need for Napster to provision lots of capacity
 - Just enough to support indexing/search needs of clients
- Proprietary protocol

P2P: Gnutella

Gnutella

- Early 2000, created by Justin Frankel & Tom Pepper at Nullsoft (recently acquired by AOL)
- Prematurely announced on Slashdot
 - Thousands download client
 - Next day AOL shuts it down over legal concerns
 - Too late, protocol reverse engineered and released as open source
- Protocol became basis for many clients
 - e.g. Limewire, Bearshare

P2P: Gnutella

- No centralized object registry
 - Hosts arrange themselves in overlay network
 - Each host runs Gnutella software
- Joining the network
 - Contact a few nodes
 - Pre-existing list shipped with software
 - Web cache of known nodes
 - Send ping to neighbors who ask their neighbors
 - New node gets pong messages back from other nodes
 - Repeat until new node reaches quota of desired neighbors

P2P: Gnutella

Query flooding

- Client wants some file
- Sends query to connected neighbors
- Neighbors send to their neighbors
- **–** ...
- Node with file sends response
 - Classic gnutella, response sent along route of the query
 - Client connects to host with file and downloads
 - Or if host is behind a firewall, clients requests host push the file

Gnutella query flooding

Query over existing TCP connections

- Flooding scalability:
 - Queries have TTL
 - Remove if been around too long
 - Unique query ID
 - Don't forward recent queries

Gnutella

Advantages

- Fully decentralized, all nodes are equals
- Hard to shutdown since no central server
- Search cost distributed among nodes

Disadvantages

- Each search may cause a lot of traffic
- Search time may be long
- Paths are unreliable with hosts going up and down

P2P: FastTrack

FastTrack

- 2001, created by Dutch company (Kazaa BV)
- Same team that later built Skype
- Hybrid P2P, uses super-nodes to improve scalability
- e.g. KaZaA, Morpheus

Smarter query flooding

- Join by contacting super-node
- Client sends list of files to its super-node
- Search: send query to super-node who floods to other super-nodes
- Fetch file directly from peer(s)

P2P: FastTrack

Supernodes

- Indexes users' shares and performs searches on them
- Normal nodes can get promoted to super-node
 - Selected based on uptime history
- Consolidate queries since many nodes only have a few files
 - May be faster for super-node to handle than delegating to normal-node

P2P: BitTorrent

BitTorrent protocol

- 2001, Bram Cohen releases first protocol implementation
- Now supported by many different clients
- 2011, ~100 million users

Motivations:

- Serve up popular content fast
 - Popularity exhibits temporal locality (flash crowd)
- Efficient fetching, not searching
 - Distribute same file to many peers
 - Single publisher, many downloaders
- Measures to prevent free-loading

- File divided into many pieces
 - Peers exchange the pieces by uploading and downloading

to each other

Seed, peer with entire file

Process:

- Users find a torrent of interest, open in BitTorrent client
- Client contacts the tracker listed in torrent file
- Gets list of peers currently transferring the file
 - Swarm the peers currently with some/all of the file

Summary

Overlay networks

- Allow deployment of new routing protocols and services
- On top of the existing physical internet
- Much nimbler that relying on upgrades in all routers

Applications of overlays:

- IPv6 deployment, Mobile IP, Multicast routing
- Virtual Private Networks (VPNs), Resilient Overlay Networks (RON)

P2P services:

- Varying degrees of centralization
- Different target applications