HTTP and the Web

()‘
i

PROPRIETE CERN

CSCl 466: Networks ® Keith Vertanen e Fall 2011

Overview

The birth of the web

Main components of the web
— URLs
— HTML
— HTTP

Caching
Context Distribution Networks

A short history of the web

[7 |

1989 Tim Berners-Lee at CERN s Q

1990 HTTP/0.9, HTML, URLs, first &/
text-based browser ?

1993 Marc Andreesen releases
NCSA Mosaic, graphical browser

1993 CERN agrees to release B B
ela én| s|w| <|>|o]|s]| | B|2] &|9| 2| S
protocol royalty-free R e i e e i 5
N C S A =
1994 Andreesen forms Netscape ‘ MOSAIC \
1994 W3C formed, standardizing NCSA Mosaic ™ for Microsoft Windows

Weicome to the Mosac for Microsoft Windows Home Page Mosaic 18 &8 World Wide Web chent
that was developed at the Natonal Center for Supercomgating Applications on the campus of The

protocols, encouraging iy e i e
interoperability e ou e

News and Announcements

O Vermea 200
© Newt Winils informaton

Sl

-
Sun 2856 T Men

A short history of the web

e 1994+ Browser wars between
Netscape and IE

* 1990s-2000 Dot com era

BROWSERS WAR

100%

90% 5000

80%

70%

60%

3000
50%

40%

2000

30%

OOthers (Opera, Safari, PSP...)
20% ENetscape 1000
W Mozilla, Firefox
B Google Chrome

10%

WInternet Explorer for Windows

0%
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

In the Web's first generation, Tim Berners-Lee launched the Uniform
Resource Locator (URL), Hypertext Transfer Protocol (HTTP), and
HTML standards with prototype Unix-based servers and browsers.

A few people noticed that the
Web might be better than Gopher.

In the second generation, Marc Andreessen and Eric Bina developed
NCSA Mosaic at the University of lllinois.

Several million then suddenly noticed that the
Web might be better than sex.

In the third generation, Andreessen and Bina left NCSA to found
Netscape...

Microsoft and Netscape open some new fronts in escalating Web Wars
By Bob Metcalfe, InfoWorld, August 21, 1995, Vol. 17, Issue 34.

Architecture of the web

D gM Yea hpay feeredm [0l ey
W-\c KR WP rp v vt g e

ac 1y
W Unbar ey o Smbiegton Crmguten . &

) aiverriy of inchingion

b Uniwansty st Weddage 0 & loge of Frgrosw g 0 Catuge o1
Tepies
W

Ahwt(h | Seand
S aed Schenres

Evtin st [aths
e men
Betwarch
Pogla
[N Y
O paricators
Curgi gl sitives
FaciySial Qoc naming
Pasl L alen Lemnt
Supmon CSE!
i-forraten f3r
il o= S0 Sanh

T T ——

Hyperlink

PbAcPres/Vimeny

fiGEnoLoGy |

Web page

W b jew ey G [oN g
PiPc 8 e

P = e e e

Informgtlon fer Curren: Siuga iy

»w S
e — W T

‘\ Document
X Program :
\
|
4 Database |
\\\ N //
\ ==/
\ / youtubs.com
\
\
\
HTTP Request
= - ==/
HTTP Response Web server
Web www.cs.washington.edu
browser

%

==/

google-analytics.com

Web components: finding stuff

e Uniform Resource Locator (URL)
— A page's worldwide name

— Three parts:
* Protocol (scheme)
* DNS name of machine
* Hierarchical name that models a file directory structure

Name Used for Example

“http | Hypertext (HTML) - http://www.ee.uwa.edu/~rob/

https | Hypertext with security | https://www.bank.com/accounts/

ftp - FTP - ftp://ftp.cs.vu.nl/pub/minix/’README
file Local file file:///usr/suzanne/prog.c

' mailto | Sending email | mailto:JohnUser@acm.org

crtsp | Streaming media - rtsp://youtube.com/montypython.mpg |
- sip - Multimedia calls . Sip:eve @adversary.com

| about | Browser information | about:plugins |

Web components: finding stuff

* URL points to one specific host

* Uniform Resource Identifier (URI)
— Say what you want, but not necessarily where from

— Uniform Resource Locators (URL)

* http://www.amazon.com/Last-Unicorn-Peter-S-Beagle/dp/
0451450523

— Uniform Resource Name (URN)
 urn:isbn:0451450523 URI
|

(URL URN)

——— ———
\%——-——/

Web components: HTML

* HyperText Markup Language (HTML)
— Represents hypertext documents in ASCIl form
— Format text, add images, embed hyperlinks
— Web browser renders

 Simple and easy to learn
— Hack up in any text editor
— Or use a fancy authoring program
* Web page
— Base HTML file references objects
— Each object has its own URL

HTML versions

:Item - HTML 1.0 HTML2.0 HTML3.0 HTML4.0 HTMLS5.0
Hyperlinks X
:Images X
Lists X
:Active maps & images
_Forms
Equations
:Toolbars
Tables
_Accessibility features
_Object embedding
Style sheets
:Scripting
_Video and audio
Inline vector graphics
:XML representation
Background threads
:Browser storage
_Drawing canvas

xX X X X X
X X X [X [X X X X
X X X X |X X X X X X X X

X X X X X X X X X X X X X X X X X X

Web components: HTTP

 HyperText Transfer Protocol (HTTP)
— Simple request-response protocol
— Runs over TCP
— ASCII format request and response headers

/> GET /rfc.html HTTP/1.1
Host: www.ietf.org

Method /User-agent: Mozilla/4.0

Header lines

Carriage return, line feed
indicates end of request

11

Request methods

Method | Description
 GET - Read a Web page |
HEAD Read a Web page’s header
GET /rfc.html HTTP/1.1 POST " Append to a Web page |
Host: www.ietf.org PuUT st Web
User-agent: Mozilla/4.0 ore a YIeb page
- DELETE | Remove the Web page
TRACE Echo the incoming request

CONNECT | Connect through a proxy
| OPTIONS | Query options for a page |

POST /login.htm| HTTP/1.1

Host: www.store.com

User-agent: Mozilla/4.0

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

userid=joe&password=guessme

12

Header

:U ser-Agent

‘_Accept

| Accept-Charset
‘_Accept-Encoding
;_Accept-Language
If-Modified-Since
:If-None-Match

_Host

- Authorization

- Referer

_Cookie
1_Se'(-Cookie

Server

Message headers

Type

: Request
- Request
: Request
- Request
; Request
‘ Request
- Request
: Request
- Request
; Request

Request
; Response :
‘ Response '

Contents

: Information about the browser and its platform

- The type of pages the client can handle

: The character sets that are acceptable to the client
- The page encodings the client can handle

The natural languages the client can handle

’ Time and date to check freshness

.~ Previously sent tags to check freshness

: The server's DNS name

~ Alist of the client’s credentials

The previous URL from which the request came

Previously set cookie sent back to the server
Cookie for the client to store
Information about the server

13

- Content-Encoding

Content-Length
. Content-Type

Content-Range
- Last-Modified

Expires

:_Location
,_Accept-Ranges
:—Date

.—Range
_Cache-ControI
ETag
[Upgrade

 S—

Content-Language :
Response

Message headers

- Response |

- Response

Response
- Response |

- Response

Response
- Response |
Date and time the message was sent

A Both
- Both
: Both

Both
i Both

Response |

How the content is encoded (e.qg., gzip)
The natural language used in the page
The page’s length in bytes

; The page’s MIME type

Identifies a portion of the page’s content
Time and date the page was last changed

; Time and date when the page stops being valid

Tells the client where to send its request

Indicates the server will accept byte range requests |

- ldentifies a portion of a page
Directives for how to treat caches

Tag for the contents of the page

| The protocol the sender wants to switch to

14

HTTP response

* Response from server
— Status line: protocol version, status code, status phrase

— Response headers: extra info
— Body: optional data HTTP/1.1 200 OK

Date: Thu, 17 Nov 2011 15:54:10 GMT

Server: Apache/2.2.16 (Debian)
Last-Modified: Wed, 14 Sep 2011 17:04:27 GMT

Content-Length: 285

<html> ...

Examples

Code Meaning
- 1xx | Information

100 = server agrees to handle client’s request

2XX | Success

- 200 = request succeeded; 204 = no content present |

3xx | Redirection

- 301 = page moved; 304 = cached page still valid

4xx Client error

403 = forbidden page; 404 = page not found

| 5xx | Servererror | 500 = internal server error; 503 = try again later | 15

HTTP protocol

e HTTP/1.0
— Early in the web

— TCP connection established, page retrieved, connection
tore down

— Hard on TCP, can't ramp up from slow start

— Not enough packets in flight for fast retransmission (which
needs 3 dup ACKs).

« HTTP/1.1

— Added support for persistent and pipelined requests

Time

HTTP communication

Connection setup

e

HTTP
- Request

— HTTP
Response

Multiple
connections and
sequential reque

sts.

Persistent
connection and

sequential requests.

Pipelined
requests =

Persistent
connection and
pipelined requests.

17

Persistent HTTP

* Non-persistent HTTP
— OS must allocate resources for each TCP connection
— Browsers often open parallel TCP connections
— Requires 2 RTTs per object

e Persistent HTTP
— Server leave connection open after sending response

— Subsequent HTTP messages from same client/server sent
over same connection

— Client issues new request only when previous response
has been received

— 1 RTT per object

Persistent HTTP

* Persistent with pipelining
— Clients sends multiple requests without waiting for
previous
— Requests need to be idempotent (e.g. GET)
— As little as 1 RTT for whole page
— Server must send responses in same order as requests
— Default in HTTP/1.1 spec
— Most browsers do not support/default to pipelining

— Head-of-line blocking problem, use parallel connections
instead

Multiple sites on one server

* Single server running host multiple web sites

— Web hosting company with many companies on same
physical server, e.g. www.widgets.com, www.junk.com

 How does it return correct response?

— Solution 1: Each web site has a separate |IP address
» Server splits up based on IP address
e Requires more IP addresses

— Solution 2: Look in HTTP header host field

* Mandatory in HTTP/1.1
* Single server with a single IP address
* Virtual hosting

20

Improving performance

* How do we make things faster?

 Minimize traffic between client/server
— Conditional requests
— Caching
— Compression

* Speed up server's response
— Multiple servers
— Geographically distributed servers
— Content delivery networks

21

HTTP Caching

e Clients often cache documents
— How and when should they check for changes?

e HTTP has cache related headers
— HTTP/1.0: "Expires: <date>"; "Pragma: no-cache"

— HTTP/1.1:

e Cache-Control: No-Cache, Private, Max-age: <seconds>

* E-tag: <some value>

1: Request 2: Check expiry

[
\

Y

3: Conditional GET

A

4a: Not modified

Y

Program

5: Response

A

A

Web browser

4b: Response

A

Web server

22

Conditional GETs

* Conditional GET
— Fetch resource only if it has changed
— Server avoids wasting resources to send again
— Client sets "if-modified-since" header field

* Server inspects "last modified" time of object

* Returns "304 Not Modified" if unchanged, otherwise "200 OK" and
new version.

— Client sets "if-no-match" using previous received ETag for
the desired object

* Server compares with current "hash" of object

HTTP conditional request

GET /HTTP/1.1

Host: katie.mtech.edu

Connection: keep-alive

User-Agent: Mozilla/5.0

Accept: text/html, application/xhtml+xml
Accept-Encoding: gzip,deflate,sdch

If-None-Match: "c-221-4ace9c0b09ccO"
If-Modified-Since: Wed, 14 Sep 2011 17:04:27 GMT

HTTP/1.1 304 Not Modified

Date: Thu, 17 Nov 2011 16:57:53 GMT
Server: Apache/2.2.16 (Debian)
Keep-Alive: timeout-15, max=100
Connection: Keep-Alive

ETag: " c-221-4ace9c0b09cc0"

Levels of caching

e Caching can occur at many levels:
— In the client's browser

— Client configs browser to use web proxy
— Proxy at the ISP

— "voluntary proxy" verus "intercepting/forced/transparent"

— Browser cache

Organization | Internet
|/

S B
Proxy cache \@

Servers

Clients

25

Accesses to Document

Long tail of unpopular pages

100000 — —— —— — —
10000 | %o .
o,
1000 .
100 i
10 .
— -
L 4
1)) |)) |) \ L)) | p—
1 10 100 1000 10000

Document Rank

100000

http://www.cs.bu.edu/techreports/pdf/1995-010-www-client-traces.pdf

Speeding up the server

* Asingle server doesn't scale

— Even a really really powerful computer will not handle
Netflix's traffic

Server farms

— Multiple servers each with replicated web site

How do clients arrive at different servers?

— Option 1: Client choose a "mirror" themselves

— Option 2: DNS spreads request over a set of IP addresses
pointing at different servers

— Option 3: Front-end load balancing

27

dig youtube.com

@ “°'“"::Z”e Oregon T, e ro
;; ANSWER SECTION: L - o
youtube.com. 3 IN O owaman Twin Fals)0 IN A 74.125.230.108
youtube.com. 3 IN Yreka saitake)0 IN A 74.125.230.109
youtube.com. 3 IN S6" Regang s %) IN A 74.125.230.99
youtube.com. 3 IN Chea o % Nevada pes)0 IN A 74.125.230.104
youtube.com. 3 IN Yuba City © R oy utah JO IN A 74.125.230.111
youtube.com. 3 IN () SataRssao * O Sacramento O IN A 74.125.230.105
youtube.com. 3 IN BS8Sg ' Stockion ho /4 0 IN A 74.125.230.107
youtube.com. 3 IN SanJose, - California PR 0 IN A 74.125.230.103
youtube.com. 3 IN = [resng. ovigss (s)0 IN A 74.125.230.102
youtube.com. 3 IN A 1/3.194.33.3/ BakerSfleldyouwoe.com. 500 IN A 74.125.230.106
youtube.com. 3 IN A 173.194.33.38 youtube.com. 300 IN A 74.125.230.97
youtube.com. 3 IN A 173.194.33.39 youtube.com. 300 IN A 74.125.230.98
youtube.com. 3 IN A 173.194.33.40 youtube.com. 300 IN A 74.125.230.110
youtube.com. 3 IN A 173.194.33.41 youtube.com. 300 IN A 74.125.230.96
youtube.com. 3 IN A 173.194.33.42 youtube.com. 300 IN A 74.125.230.100
vinnikiiha A~ 2 INI A 1729 104 29 AD vinnikiiha A~ 20\N INI A ZA 123 C 29929N 101

vertanen@katie:~S ping 173.194.33.44

PING 173.194.33.44 (173.194.33.44) 56(84) bytes of data.

64 bytes from 173.194.33.44: icmp_req=1 ttI=54 time=16.7 ms
64 bytes from 173.194.33.44: icmp_req=2 ttl=54 time=16.2 ms
64 bytes from 173.194.33.44: icmp_req=3 ttl=54 time=16.6 ms
64 bytes from 173.194.33.44: icmp_req=4 ttl=54 time=15.8 ms

kvertanen@1i264-110:~S ping 74.125.230.108

PING 74.125.230.108 (74.125.230.108) 56(84) bytes of data.

64 bytes from 74.125.230.108: icmp_req=1 ttl=57 time=1.13 ms
64 bytes from 74.125.230.108: icmp_req=2 ttl=57 time=1.14 ms
64 bytes from 74.125.230.108: icmp_req=3 ttl=57 time=1.11 ms
64 bytes from 74.125.230.108: icmp_req=4 ttl=57 time=1.08 ms

katie

london

Front-end load balancing

Internet
— = access

Balances load
gacross servers

\

I
\\/

//
Q m
%8
O 2
m(b
n =2
(DQ.

— = Front end
| ___Sewerfarm ~ Servers |
Clients

e Single IP address for front-end
— Front-end could broadcast all requests
» Server responds by prior agreement (e.g. last 4-bits of source IP)

— Front-end maps client to single server in a set
* Load balancer inspects IP, TCP, and HTTP headers

Caching for hire

e Content Distribution Networks (CDNs)
— Pay someone to replicate your web site on many servers

— CDN installs thousands of servers
* In large datacenters with good connectivity
* Close to users, lower latency - speeds up TCP slow-start
* Amortize expense, customers sites can now handle "flash crowds"

— Whenever you change content, update the CDN servers

CDN origin @
server ==’ - Distribution to
S~ [CDN nodes

-~

-~
-
-~
-~

Boston [— Amsterdam

N
S -

Worldwide clients

DNS redirection

e How do clients use the CDN tree?

e DNS redirection
— CDN runs the name server

— Hands client the IP of the "best" CDN node

C%)ll\ldrr:?clie CDN origin Amsterdam

server CDN node

1: Distribute content
gy oo &= - 63

4: Fetch
page

Sydney clients Amsterdam clients

CDN DNS
2: Query DNS sener

o —
T 1

- -
3: “Contact Sydney” “Contact Amsterdam”

Akamai

e Akamai Technologies (A .
Akamai

— First major CDN
— Companies pay Akamai to deliver their content

— Akamai wants nodes inside ISP networks
— ISP networks want the nodes

* Reduces their transit traffic
* Make things faster for their customers

I
1111
(! 1111

—
- —
—
——_
-
—
-~

e

\

AR

MMV

How Akamai Works

cnn.com

DNS root server

GET
index.html

: Akamai
~ Akamai global

L" cluster
l! DNS server

HTTP | | http://cache.cnn.com/cnn.com/foo.jpg l

~ Akamai regional
lj DNS server

Nearby
Akamai
cluster

End-user

33

How Akamai Works

cnn.com

DNS root server

. Akamai

‘r Akamai global

il cluster
"' DNS server

ALIAS:

HTTP g.akamai.net —
-~ Akamai regional
ulgf DNS server

Nearby
Akamai
cluster

End-user

34

How Akamai Works

cnn.com

DNS root server

 DNS lookup
l‘lE‘ g.akamai.net

. Akamai
lr_,’ Akamai global cluster
"' DNS server

l;' Akamai regional
tllg’ DNS server

Nearby
Akamai
cluster

End-user

35

How Akamai Works

cnn.com

DNS root server

. Akamai
lr_,’ Akamai global cluster
"' DNS server

l;' Akamai regional
tllg’ DNS server

Nearby
Akamai

End-user
cluster

36

How Akamai Works

cnn.com

DNS root server

; Akamai

~ Akamai global

f,’ cluster
"' DNS server

Tr Akamai regional
ulg’ DNS server

T /foo.jpg
Host: cache.cnn.com 9

10

Nearby
Akamai
cluster

End-user

37

How Akamai Works

cnn.com

DNS root server
. GET foo.jpg

"

. Akamai

5 r" Akamai global cluster
"' DNS server

Tr Akamai regional
ulg’ DNS server

Nearby
Akamai
cluster

End-user

38

Summary

* How the web works
— HTTP protocol over TCP
— HTML standard for pages
— URLs for locating things

 Making the web faster
— Conditional requests
— Caching on the host
— Caching in the network
— Content distribution networks

