
Network software &
performance

CSCI 466: Networks • Keith Vertanen • Copyright © 2011

latency

propagation transmit queue

Overview

• How do we write network software?

– Socket API

• How do we measure network performance?

– Bandwidth

– Propagation delay

– What happens if bandwidth is ∞?

– Effective throughput of a network

2

Clients and servers

• Client program

– Requests service

– E.g. web browser,
audio player, Twitter
client

3

• Server program

– Provides service

– E.g. web server, audio
server at streaming
station, server at
Twitter

Clients and servers

• Client program

– “sometimes”

– Doesn’t talk to other
clients

– Needs to know
server’s address

4

• Server program

– “always on”

– Serves requests from
many clients

– Needs fixed address

Communication steps

• Network

– Gets data to the destination host

– Uses destination IP address

• Operating system

– Forwards data to a given “silo” based on port #

– E.g. All port 80 request go the web server

• Application

– Actually reads and writes to socket

– Implement the application specific magic

5

Port numbers

• Popular applications have known ports

– Server uses a well-known port, 0 - 1023

– Client uses a free temporary port, 1024 - 65535

 6

Port Service

21 File transfer protocol (FTP)

22 Secure shell (SSH)

23 Telenet

25 Simple mail transfer protocol (SMTP)

53 Domain name system (DNS)

80 Hypertext transfer protocol (HTTP)

110 Post office protocol (POP)

143 Internet message access protocol (IMAP)

443 HTTP secure (HTTPS)

Use of port number

7

192.168.23.100:80 Requesting a non-
secure web page

web
server

mail
server

OS

192.168.23.100:443 Requesting a
secure web page

web
server

mail
server

OS

192.168.23.100:143 Requesting new
email messages

web
server

mail
server

OS

Sockets

• Socket API (applications programming interface)

– Originally in Berkeley Unix

• Thus: Berkeley sockets, BSD sockets

– De facto standard in all operating systems

– Functions called by client, by server, or by both:
• socket(), bind(), connect(), listen(),

accept(), send(), recv(), sendto(),

recvfrom(), close()

– Use integer file descriptor (like reading/writing
from a file)

8

High-level process

9

 // Fire up connection

 // to the server

 getaddrinfo()

 socket()

 connect()

 // Exchange data

 while (!done)

 {

 send()

 recv()

 }

 // Shutdown

 close()

 // Initial socket setup

 getaddrinfo()

 socket()

 bind()

 listen()

 while (1)

 {

 // Wait for new caller

 accept()

 // Exchange data

 while (!done)

 {

 recv()

 send()

 }

 // Disconnect

 close()

 }

 Client program Server program

Client/Server: initial setup

• Prepare some stuff you'll need later

 int getaddrinfo(const char *node,

 const char *service,

 const struct addrinfo *hints,

 struct addrinfo **res);

 node - e.g. "www.example.com" or IP address

 service - e.g. "http" or port number (as a string)

 hints - already filled in struct with things like

 IPv4/IPv6 or stream/datagram

 res - result, needed by socket(), connect(), bind()

 NOTE: free up after use with freeaddrinfo()

 Returns 0 on success.

10

Client: creation
• Creating a socket

int socket(int domain, int type, int protocol);

domain - PF_INET for IPv4

type - SOCK_STREAM for reliable byte stream (TCP)

protocol - normally set to 0

Returns -1 on failure.

11

domain

PF_INET Internet family (IPv4)

PF_UNIX Unix pipe

PF_PACKET Direct network access
(bypasses TCP/IP stack)

type

SOCK_STREAM Reliable stream
service

SOCK_DGRAM Message oriented,
such as UDP

Client: connecting

• Contact server for connection

– Associate socket handle with server address + port

– Obtain a local port number (assigned by OS)

– Request a connection with server

int connect(int sockfd, struct sockaddr *serv_addr,

 int addrlen);

sockfd - the socket descriptor

serv_addr - struct contain server info

addrlen - length of serv_addr struct

Returns -1 on failure.

12

Client: sending and receiving

• Finally let’s exchange some data!

int send(int sockfd, const void *msg, int len, int flags);

int recv(int sockfd, void *buf, int len, int flags);

sockfd - socket descriptor

msg - pointer to buffer to be sent/received

len - length of buffer

flag - normally 0

Returns bytes sent or received. NOTE: send() may send fewer

bytes than requested for big messages!

13

Server: get ready to rock

• Create a socket

– Server usually knows its port (nobody else better
be using it)

 int socket(int domain, int type, int protocol);

• Bind to address + port

int bind(int sockfd, struct sockaddr *my_addr,

 int addrlen);

sockfd - description return by socket()

my_addr - struct contain info about address/port

addrlen - length of address

Returns -1 on failure.

14

Server: maximum backlog

• Many clients may request service

– Server can’t handle all at once

• Server specifies maximum pending

int listen(int sockfd, int backlog);

sockfd - socket descriptor

backlog - maximum number of pending connections

Returns -1 on failure.

15

Server: accepting clients

• Server waits until client arrives

• Accept a new client connection

 int accept(int sockfd, struct sockaddr *serv_addr,

 int addrlen);

 sockfd - the socket descriptor

 serv_addr - struct contain info about client

 addrlen - length of serv_addr struct

 Returns new socket descriptor for the accepted connection.

16

Server: handling concurrency

• Server could serialize work

– Service one client from start to finish

– Move to the next one

– Allow backlog to queue up waiting clients

• But client request could be long, resource
bound, etc.

– Spawn process/thread for each accepted client

17

Server: handling concurrency

18

 // Initial socket setup

 getaddrinfo()

 socket()

 bind()

 listen()

 while (1)

 {

 // Wait for new caller

 accept()

 // Exchange data

 while (!done)

 {

 recv()

 send()

 }

 // Disconnect

 close()

 }

 Server program

thread 1

thread 2

thread 3

Performance

19

Bandwidth

• Bandwidth - measure of the frequency band

– e.g. voice telephone line supports frequencies
from 300 Hz - 3300 Hz, bandwidth = 3000 Hz

• Bandwidth - bits transmitted per unit time

– 1 Mbps = 1 x 106 bits/second

– e.g. 802.11g wireless has a bandwidth of 54 Mbps

• Bandwidth, mega = 1 x 106 = 1000000

• File size, mega = 220 = 1048576

• Throughput - actual obtainable performance

– e.g. 802.11g wireless has a throughput ~22 Mbps
20

Bandwidth

21

(a) bits transmitted at 1 Mbps (each bit is 1 x 10-6 seconds wide)
(b) bits transmitted at 2 Mbps (each bit is 0.5 x 10-6 seconds wide)

Watch your units!

• Bandwidth

– gigabits (Gbps) = 109 bits/second

– megabits (Mbps) = 106 bits/second

– kilobits (Kbps) = 103 bits/second

• File sizes

– 8 bits / byte

– gigabyte (GB) = 230 bytes

– megabyte (MB) = 220 bytes

– kilobyte (KB) = 210 bytes

22

Latency

• Latency or delay - how long it takes a message
to go from one end of network to other

– Measured in units of time (often ms)

• Round-trip time (RTT) - how long from source
to destination and back to source

• Jitter - variance in latency (affects time sensitive applications)

23

Latency

• latency = propagation + transmit + queue

• propagation = distance / speed of light

• transmit = size / bandwidth

24

latency

propagation transmit queue

Queuing delays
inside the
network

More important for
short messages

More important
for long messages

Speed of light

25

Medium Speed of light

Vacuum 3.0 x 108 m/s

Copper cable 2.3 x 108 m/s

Optical fiber 2.0 x 108 m/s

http://xkcd.com/723/

http://xkcd.com/723/

Latency example

26

Transmit dominates, RTT
makes little difference

RTT dominates, transmit
makes little difference

Transmit
important until
RTT gets big

Delay x Bandwidth

• Channel is like a hollow pipe

• Latency is length, bandwidth is width

• delay = 50 ms, bandwidth of 45 Mbps

 (50 x 10-3 sec) x (45 x 106 bits/sec)

 2.25 x 106 bits x (1 byte/8 bits) x (1 KB/210 bytes) =

 275 KB data (how much fits in the pipe)

27

Delay x Bandwidth

• Often we consider RTT as the delay

– Takes RTT = 2 x latency to hear back from receiver

• If sender wants to keep pipe full:

– Delay x Bandwidth = # bits transmitted before
hearing from receiver all is well, “bits in flight”

– Delay x Bandwidth = # bits sent before waiting for
signal from receiver

28

High speed networks

• Bandwidth increasing dramatically

• But speed of light is constant

29

1 MB file, 1-Mbps link with RTT of 100ms, 80 full pipes
1 MB file, 1-Gbps link with RTT of 100ms, 1/12 of a full pipe

High speed networks

• Throughput = Transfer size / Transfer time

• Transfer time = RTT + 1/Bandwidth x Transfer size

30

File size
(MB)

RTT Bandwidth
(Gbps)

Transmit
time (ms)

Transfer time (ms)

Throughput
(Mbps)

0.25 100 1 2.1 102.1 19.6

0.50 100 1 4.2 104.2 38.4

1 100 1 8.4 108.4 73.8

2 100 1 16.8 116.8 137.0

4 100 1 33.6 133.6 239.6

8 100 1 67.1 167.1 383.0

16 100 1 134.2 234.2 546.5

Summary

31

• Overview of socket API

– Very common thing to use

• Measuring network performance

– Bandwidth, how frequently bits can be sent

– Latency, how long the bits take to get there

– High speed networks

• RTT starts to dominate

