Congestion control

CSCl 466: Networks ® Keith Vertanen e Fall 2011

Overview

Congestion in the network

— Connection model and flows
— What routers do

Avoiding congestion collapse
— Congestion control by senders

— Slow down sending for the greater good

TCP congestion control algorithm
— Slow start, fast retransmit, fast recovery

Congestion avoidance
— Detecting eminent before packet loss

Not a problem with circuit switching

 Connection-oriented (circuit switched)
— Nodes reserve resources (e.g. buffer space along path)
— Circuit is rejected if resources aren't available
— Cannot exceed what the network can handle

Physical (copper)

- e O O o—— connection set up
- - - O—— whgn call is made
~A-O———-0
» O——
1/ . O X —10 O—+—(r—
/\ N\ P

N
(a) \

‘Switching office

Computer Packets queued
for subsequent
f-r.'!r-- CHHD {HO O transmission
L‘ ‘ 0000+ 0 \—F
oo | ;
<>~ | 00 ob o=
00 oooo——{ 7]
- I l s b
oo ‘ooa | 5
0000 OO0 0 /!
Computer

IP best-effort network

* Best-effort model
— Everybody can send
— Network does the best it can to deliver
— Delivery not guaranteed, some traffic may be dropped

-
)

-l -
e >
- =
-£3-

AN 7 N\
N W . W

Congestion unavoidable

 Multiple packets arrive at same time
— Router can only transmit one
— Router has to buffer remaining

* If too many arrive in a short time window

— Buffer may overflow
— Router has to choose some packets to drop

Source 1

=y

' | Destination

Queue ———

100-Mbps Ethernet Router 1 ‘ -
Source 2 \ :DIH]] 1.5-Mbps T1

What routers do

 Too many packets arrive too quickly
— Which packets should we drop?

* First-in first-out (FIFO) with tail drop
— Simple, drop the new guy that doesn't fit in your buffer

(a)

Arriving Next free Next to
packet buffer transmit
. —
- / — L 7,,,,, =

Free buffers Queued packets

)
"~ Arriving Next to

packetu transmit
\

Queuing disciplines

* Priority queuing
— Packets marked with priority in header
— Multiple FIFO queues, one for each priority class
— Transmit high priority queues first
— Who is allowed to set priority bit?

high priority = —
medium priority T —

low priority T —

Network flows

* Connection flows
— IP network is connectionless
— Datagrams really not independent
— Stream of datagrams between two hosts
— Routers can infer current flows, "soft state"

Router

(‘,_-{ Destination
<3 3 1

Router v
3
f_?outer "
@ Destination
2

Fair queuing

Use flows to determine scheduling
— Prevent hosts from hogging all the router resources

— Important if hosts don't implement host-based congestion
control (e.g. TCP congestion control)

— Each flow gets its own queue, served round-robin

Flow 1

Flow 2

Round-robin
service

Flow 3

Fair queuing

* Round-robin scheduling

— Packets different lengths, approximate bit-level round-
robin

— Compute virtual finish time assuming each "round" drains
byte from each queue

— Sort in order of virtual finish time

— Different flows might be assigned weights

Arrives Arrives after D
Iate\ / but goes first : -

Packet | Arrival | Length | Finish | Output
time time | order

\ F A A 0 8 8 1

x B 5 6 11 3

. C 5 10 10 2

- D || B Fair D 8 9 | 20 | 7

queueing E 3 8 14 4

F 10 6 16 5

G - c || oX G 11 10 19 6

H 20 8 28 8

N

Input queues Weight is 2

Congestion collapse

* Congestion collapse
— 1986, NSF backbone dropped from 32 kbps to 40 bps

* Hosts send packets as fast as advertised window allowed
* When packets dropped, hosts retransmit causing more congestion

— Goodput = useful bits delivered per unit time

* Excludes header overhead, retransmissions, etc.

Goodput (packets/sec)

Ideal
| __Capacityof /
the network

T~ Desirable
response
Congestion

Onset of
: I
Congestion collapse

Offered Load (packet/sec)
11

TCP congestion control

 TCP congestion control
— Introduced by Van Jacobson in the late 80's
— Done without changing headers or routers
— Senders try and determine capacity of network
— Implicit congestion signal: packet loss

— ACK from previous packet determines when to send more
data, "self-clocking"

fast link slow link

{ (@
EVEIRS |

1

ACK clock

12

TCP congestion control

e Each TCP sender tracks:
— Advertised window, for flow control
— Congestion window, for congestion control

e Sender uses minimum of the two:
— Advertised window prevent overrunning receiver's buffer
— Congestion window present overloading network

e Situation is dynamic:

— Network changes
* e.g. new high bandwidth link, other hosts start/stop sending

— Sender always searching for best sending rate

13

AIMD

Additive increase, multiplicative decrease (AIMD)

— Additive increase: On success of last packet, increase
window by 1 Max Segment Size (MSS)

— Multiplicative decrease: On loss of packet, divice
congestion window in half

A
 Start
< | \ . :
= Fairness line Legend:
2 A = Additive increase
2 / (up at 450)
('U N’
o 2 S Y . _ T
” . ‘Optimal point / = Myltlpllcgtlve dec.re-_ase
~ (line points to origin)
o Efficiency line
n 2
oD ’;':;/ \\ *J
e -

User 1's bandwidth

14

Basic TCP congestion control

 Add one packet to window per RTT
— Works well if we start near capacity

Source Destination

— Otherwise could take a long time to
discover real network capacity

70 -
60
50

D 40
30
20
10 -

1.0 2.0 3.0 4.0 5.0 6.0 7;0 8.0 9.0 10.0
Time (seconds)

15

Slow start

Source Destination

e Slow start

— Increase congestion window rapidly from
cold start of 1

— Add one to window for every good ACK

* Exponential increase in packets in flight

— On packet loss, start over at 1

A

A

— Slow in comparison to original TCP

* Immediate sending up to advertised window
(caused congestion collapse)

\
Y
W

N
S

http://histrory.visualland.net/tcp swnd.html

16

Slow start

e Congestion threshold (slow start threshold)
— Initially set to large value
— Updated on a multiplicative decrease
— When we ramp up, switch to additive when we reach

 Additive
increase

Slow
4 start
’

-
-
-
d—-—
o

Threshold 32 KB

Packet
loss

Congestion window (KB or packets)

0 2 4 6 8 10 12 14 16 18 20 22 24
Transmission round (RTTs)

17

Fast retransmission

* Problem: Timeouts take a long time

. . - Sender Receiver
— Connection sits idle waiting for a _—
packet we are pretty sure is never :z::i o
going to be ACK'd) s ACK 2
* Fast retransmission Packet 5 ACK 2
. L. . Packet 6
— Heuristic to retransmit packet we ACK 2
suspect was lost ACK 2
— Triggered when we observe 3 packats.
duplicate ACKs ACK 6

— 20% increase in throughput
e TCP "Tahoe"

18

Fast recovery

* Problem: Restarting from 1 takes too long
— We spend too long below "known" network limit

* Fastrecovery
— ACK clock is still working even though packet was lost

— Count up dup ACKs (including 3 that triggered fast
retransmission)

— Once packets in flight has reached new threshold, start
sending packet on each dup ACK

— Once lost packet ACK's, exit fast recovery and start linear
increase

Fast recovery

e "TCP Reno"
— Tahoe + fast recovery

Congestion window (KB or packets)

40

35

30

25

20

15

10

N oy Additive
_.-=" increase
- Packet
Thresh.—4=* loss
Fast Multiplicative
N recovery decrease

Threshold -------¥<2-=eeeex

0 4 8 12 16 20 24 28 32 36 40 44 48

Transmission round (RTTs)

20

Wireless networks

 TCP congestion control uses packet loss as signal
— Wireless/satellite links = high error rate
— TCP could think loss is due to congestion not bit errors

* Possible solutions:
— Link layer acknowledgements and retransmission
— Forward error correction
— Split connection into wireless/wired segments
— Use other signals than packet loss: increasing RTT

Control vs. avoidance

* Congestion control
— Dealing with packet loss once it occurs

* Congestion avoidance
— Attempt to control send rates before packets dropped
— Explicit signal generated by routers
— Implicit signal inferred by hosts
— Currently not widely adopted

Router signaling

* Explicit Congestion Notification (ECN)
— Sender sets TOS IP header bit saying it supports ECN
— |f ECN-aware router is congested, marks another TOS bit

— TCP receiver sees IP congestion bit, informs sender via TCP
segment ECN-Echo (ECE) bit

— TCP sender confirms receipt of ECE with Congestion
Window Reduced (CWR) bit

4) 16 1§) 31
32
Version | HLen TOS Length
| t Flag Offset
T Protoco heckst Segquence numbar
SourceAddr Acknowledgement number
DestinationAdd CcP B
ader
P ngth E
Opti ble) ariat
Ve Urgent pointer
Data
(optio

TCP congestion avoidance

* How does router determine congestion?
— Checks avg. queue length spanning last busy + idle cycle

Queue length
i

Current
time

= Time

Previous Current
———
cycle cycle

Averaging l
interval

 What does TCP sender do with congestion signals?
— Checks fraction of last window's worth of packets
— If < 50%, increase congestion window
— If > 50%, decrease congestion window by 0.875

24

What if hosts don't support ECN?

 Random early detection (RED)
— If router approaching congestion: drop a random packet
— Source detects packet loss and can adjust send rate

— Randomness approximates fairness since more likely to
signal host sending lots of packets

— Various parameters controlling drop behavior

Queue length
A

Instantaneous

\

/\/\ Average
=1 \/\ / Timf

Source based avoidance

* Hosts watch for signs of congestion
— Adjust before packets actually dropped

— Possible signals:
* Increasing RTT
* Flattening of sending rate
* Changes in the sending rate

L
AR R RF LR BRI RN B LR BRI LD DL T BRI DL LU

70" trrrm 'IIII:)

Congestion
window

05 10 15 20 25 3.0 35 40 45 50 55 60 65 70 75 80 85
Time (seconds)

1100 -
900 -
X 7001 Observed

300
100 k s

05 10 15 20 25 3.0 35 40 45 50 55 60 65 70 75 80 85
Time (seconds)

Bps

Sending

2 10-
) Buffer
; -
p . space
g 54
': taken at
> router
8 1] |] 1] 1 1 1 I 1] 1 1] 1] T 1

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Time (seconds)
27

Source based avoidance

TCP "Vegas"

— Monitor for signs of increasing congestion using RTT
* Track minimum RTT

e Measure actual rate for one RTT

* Compare with expected rate (using minimum RTT), increase or
decrease window linearly

* Use multiplicative decrease if actual loss

70
60
50

m 40 -
X 30-

20 -
10

240
200 -

w 1604

@ 120
x

80 -
40

05 10 156 20 25 30 35 40 45 50 55 60 65 70 75 8.0
Time (seconds)

T T T T T 1§ T Y T T T T T T T 1
05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8.0
Time (seconds)

28

Cheating

* Not everybody plays fair:
— Run multiple TCP connections in parallel

— Change the TCP implementation
* Starts your TCP connection off with > 1 MSS

— Use a protocol without congestion control (e.g. UDP)

— Good guys slow down to make way so others can have
unfair share of bandwidth

* Possible solutions?
— Routers detect cheating and drop excess traffic
— Fair queuing

Summary

* Network congestion
— Too many packets, routers have to drop

— Routers can do this in various ways
* FIFO tail drop, fair queuing, Random Early Detection (RED)

* Congestion control
— Senders use dropped packets as signal to slow down

— TCP congestion control
* Slow start, fast retransmission, fast recovery

 Congestion avoidance

— Router signaling, e.g. ECN
— Host monitoring, e.g. TCP "Vegas"

