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Overview

Congestion in the network

— Connection model and flows
— What routers do

Avoiding congestion collapse
— Congestion control by senders

— Slow down sending for the greater good

TCP congestion control algorithm
— Slow start, fast retransmit, fast recovery

Congestion avoidance
— Detecting eminent before packet loss



Not a problem with circuit switching

 Connection-oriented (circuit switched)
— Nodes reserve resources (e.g. buffer space along path)
— Circuit is rejected if resources aren't available
— Cannot exceed what the network can handle
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IP best-effort network

* Best-effort model
— Everybody can send
— Network does the best it can to deliver
— Delivery not guaranteed, some traffic may be dropped
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Congestion unavoidable

 Multiple packets arrive at same time
— Router can only transmit one
— Router has to buffer remaining

* If too many arrive in a short time window

— Buffer may overflow
— Router has to choose some packets to drop
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What routers do

 Too many packets arrive too quickly
— Which packets should we drop?

* First-in first-out (FIFO) with tail drop
— Simple, drop the new guy that doesn't fit in your buffer
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Queuing disciplines

* Priority queuing
— Packets marked with priority in header
— Multiple FIFO queues, one for each priority class
— Transmit high priority queues first
— Who is allowed to set priority bit?
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Network flows

* Connection flows
— IP network is connectionless
— Datagrams really not independent
— Stream of datagrams between two hosts
— Routers can infer current flows, "soft state"

Router

(‘,_-{ Destination
<3 3 1

Router v
3
f_?outer "
@ Destination
2



Fair queuing

Use flows to determine scheduling
— Prevent hosts from hogging all the router resources

— Important if hosts don't implement host-based congestion
control (e.g. TCP congestion control)

— Each flow gets its own queue, served round-robin
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Fair queuing

* Round-robin scheduling

— Packets different lengths, approximate bit-level round-
robin

— Compute virtual finish time assuming each "round" drains
byte from each queue

— Sort in order of virtual finish time

— Different flows might be assigned weights
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Congestion collapse

* Congestion collapse
— 1986, NSF backbone dropped from 32 kbps to 40 bps

* Hosts send packets as fast as advertised window allowed
* When packets dropped, hosts retransmit causing more congestion

— Goodput = useful bits delivered per unit time

* Excludes header overhead, retransmissions, etc.
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TCP congestion control

 TCP congestion control
— Introduced by Van Jacobson in the late 80's
— Done without changing headers or routers
— Senders try and determine capacity of network
— Implicit congestion signal: packet loss

— ACK from previous packet determines when to send more
data, "self-clocking"
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TCP congestion control

e Each TCP sender tracks:
— Advertised window, for flow control
— Congestion window, for congestion control

e Sender uses minimum of the two:
— Advertised window prevent overrunning receiver's buffer
— Congestion window present overloading network

e Situation is dynamic:

— Network changes
* e.g. new high bandwidth link, other hosts start/stop sending

— Sender always searching for best sending rate
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AIMD

Additive increase, multiplicative decrease (AIMD)

— Additive increase: On success of last packet, increase
window by 1 Max Segment Size (MSS)

— Multiplicative decrease: On loss of packet, divice
congestion window in half
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Basic TCP congestion control

 Add one packet to window per RTT
— Works well if we start near capacity

Source Destination

— Otherwise could take a long time to
discover real network capacity
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Slow start

Source Destination

e Slow start

— Increase congestion window rapidly from
cold start of 1

— Add one to window for every good ACK

* Exponential increase in packets in flight

— On packet loss, start over at 1

A

A

— Slow in comparison to original TCP

* Immediate sending up to advertised window
(caused congestion collapse)
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Slow start

e Congestion threshold (slow start threshold)
— Initially set to large value
— Updated on a multiplicative decrease
— When we ramp up, switch to additive when we reach
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Fast retransmission

* Problem: Timeouts take a long time

. . - Sender Receiver
— Connection sits idle waiting for a _—
packet we are pretty sure is never :z::i o
going to be ACK'd ) s ACK 2
* Fast retransmission Packet 5 ACK 2
. L. . Packet 6
— Heuristic to retransmit packet we ACK 2
suspect was lost ACK 2
— Triggered when we observe 3 packats.
duplicate ACKs ACK 6

— 20% increase in throughput
e TCP "Tahoe"
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Fast recovery

* Problem: Restarting from 1 takes too long
— We spend too long below "known" network limit

* Fastrecovery
— ACK clock is still working even though packet was lost

— Count up dup ACKs (including 3 that triggered fast
retransmission)

— Once packets in flight has reached new threshold, start
sending packet on each dup ACK

— Once lost packet ACK's, exit fast recovery and start linear
increase



Fast recovery

e "TCP Reno"
— Tahoe + fast recovery
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Wireless networks

 TCP congestion control uses packet loss as signal
— Wireless/satellite links = high error rate
— TCP could think loss is due to congestion not bit errors

* Possible solutions:
— Link layer acknowledgements and retransmission
— Forward error correction
— Split connection into wireless/wired segments
— Use other signals than packet loss: increasing RTT



Control vs. avoidance

* Congestion control
— Dealing with packet loss once it occurs

* Congestion avoidance
— Attempt to control send rates before packets dropped
— Explicit signal generated by routers
— Implicit signal inferred by hosts
— Currently not widely adopted



Router signaling

* Explicit Congestion Notification (ECN)
— Sender sets TOS IP header bit saying it supports ECN
— |f ECN-aware router is congested, marks another TOS bit

— TCP receiver sees IP congestion bit, informs sender via TCP
segment ECN-Echo (ECE) bit

— TCP sender confirms receipt of ECE with Congestion
Window Reduced (CWR) bit
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TCP congestion avoidance

* How does router determine congestion?
— Checks avg. queue length spanning last busy + idle cycle

Queue length
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 What does TCP sender do with congestion signals?
— Checks fraction of last window's worth of packets
— If < 50%, increase congestion window
— If > 50%, decrease congestion window by 0.875

24



What if hosts don't support ECN?

 Random early detection (RED)
— If router approaching congestion: drop a random packet
— Source detects packet loss and can adjust send rate

— Randomness approximates fairness since more likely to
signal host sending lots of packets

— Various parameters controlling drop behavior
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Source based avoidance

* Hosts watch for signs of congestion
— Adjust before packets actually dropped

— Possible signals:
* Increasing RTT
* Flattening of sending rate
* Changes in the sending rate
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Source based avoidance

TCP "Vegas"

— Monitor for signs of increasing congestion using RTT
* Track minimum RTT

e Measure actual rate for one RTT

* Compare with expected rate (using minimum RTT), increase or
decrease window linearly

* Use multiplicative decrease if actual loss
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Cheating

* Not everybody plays fair:
— Run multiple TCP connections in parallel

— Change the TCP implementation
* Starts your TCP connection off with > 1 MSS

— Use a protocol without congestion control (e.g. UDP)

— Good guys slow down to make way so others can have
unfair share of bandwidth

* Possible solutions?
— Routers detect cheating and drop excess traffic
— Fair queuing



Summary

* Network congestion
— Too many packets, routers have to drop

— Routers can do this in various ways
* FIFO tail drop, fair queuing, Random Early Detection (RED)

* Congestion control
— Senders use dropped packets as signal to slow down

— TCP congestion control
* Slow start, fast retransmission, fast recovery

 Congestion avoidance

— Router signaling, e.g. ECN
— Host monitoring, e.g. TCP "Vegas"



