Transport layer and TCP

CSCl 466: Networks ® Keith Vertanen e Fall 2011

Overview

* Principles underlying transport layer
— Multiplexing/demultiplexing
— Detecting errors
— Reliable delivery
— Flow control

 Major transport layer protocols:
— User Datagram Protocol (UDP)
e Simple unreliable message delivery

— Transmission Control Protocol (TCP)
* Reliable bidirectional stream of bytes

End host

Application

Presentation

Session

Transport J
N

Network

| Data link

Physical

Transmission Control Protocol (TCP)

Stream of bytes

— Send and receive streams, not messages

Reliable, in-order delivery

— Checksums to detect corrupted data

— Sequence numbers to detect losses and reorder

— Acknowledgements and retransmission for reliability
Connection-oriented

— Explicit setup and teardown of connections

— Full duplex, two streams one in each direction

Flow control

— Prevent overrunning receiver's buffer

Transmission Control Protocol (TCP)

Congestion control
— Adapt for the greater good

History:
— RFC 793, TCP formally defined, September 1981
— RFC 1122, clarification and bug fixes
— RFC 1323, high performance extensions
— RFC 2018, selective acknowledgements
— RFC 2581, congestion control
— RFC 2873, quality of service
— RFC 2988, improved retransmission timers
— RFC 3168, congestion notification

— RFC 4614, guide to TCP RFCs

TCP service model

e Uses port number abstraction, same as UDP
 Demultiplexing key:
— <source IP, source port, destination IP, destination port>

* Byte steam, no message boundaries

— No way to know what size chunks given to SEND when
other side does RECEIVE

IP header TCP header
\ /

A B C D A B C D
Four 512-byte segments sent as separate IP 2048 bytes of data delivery
datagrams. to application in single

READ call

TCP "stream of bytes" service

Host A wavw .
Every byte on a
TCP connection
has a 32-bit
sequence
number
Host B E22g ||z

Emulating a byte stream

Host A
PP @
TCP segment TCP segment sent when:
S~ 1) Segment full (hits the max
segment size)
2) Hits a timeout value
Push icati
e — 3) Pushed by application
Host B

0 NAg |«
[VAG |«
7 NAg |«
€ JAg le

08 AAg

TCP Segment

IP Hdr >

TCP Data (segment) TCP Hdr

* |P packet
— No bigger than Maximum Transmission Unit (MTU)
— Up to 1500 bytes on an Ethernet, 20 bytes

 TCP packet
— |IP packet with a TCP header and data inside
— TCP header, 20 bytes long

* TCP segment
— No more than Maximum Segment Size (MSS) bytes
— Up to 1460 consecutive bytes from the stream

Determining MSS

e Maximum Segment Size (MSS)

— Default size:

* Nodes must support min IP MTU of 576 bytes
* 536 bytes =576 — 20 (IP header) — 20 (TCP header)

e Usually doesn't fragment, unless IP/TCP options used

— Nodes specify MSS during connection setup
* Done via MSS option field of TCP segment header

e Could be different in each direction

TCP Data (segment)

TCP Hdr

IP Hdr

TCP header

- 32 Bits

Sequence
| .
number of first
Source port Destination port// byte in this
Sequence number segment
Acknowledgement number $ NeXt in_order
—
TCP C|E|U|A|P|R|S|F byte expected
header W|ICIR|C| S| S|Y]|I Window size
length RIE|IG|K|H| T|N|N
Checksum Urgent pointer \
"~ How many bytes
S Options (0 or more 32-bit words) 4L
T T may be sent
l— \ Data (optional) i next, O = NOo mMore
1 1 data right now

\

Required in IPv4 and IPv6

10

TCP flag bits

32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP ClEU : P|R[S|F
header w|C C|S|S|Y]|I Window size
length R|E KIH| T|N[N
Checksum Urgent pointer
o Options (0 or more 32-bit words) ‘:}:
o Data (optional) :’L
ACK Acknowledgement number is valid (usually set)

PSH Pushed data, receiver delivery to app without buffering

RST Abruptly reset a confused connection
SYN Used to establish connections
FIN Used to release a connection

11

Connection: three-way handshake

CONNECT

Sends TCP segment to
(IP, port) with SYN bit
on, ACK bit off

LISTEN, ACCEPT
Passively waits for incoming
connection

Receives segment.

OS hands off to process that
has done LISTEN on port.

If process accepts, send TCP
with SYN and ACK bit set.

Server

<« Time

Server has to remember it's
sequence number in step 2

12

SYN flooding

SYN flooding SN

— Denial-of-service attack

» Attacker sends large number of SYN &
requests

{'WPPP i

W

SYN-ACK

* Never responds or spoofs source IP
address

er e

— Server runs out of resources -

* Server has to track assigned sequence
number

s &

L

. B3

* Fills with half-open connections

13

SYN cookies

* Server generates sequence number
— Uses cryptographic process

— Combine counter, MSS requested, and secret generated
from client/server IP and ports

* Fires off response, forgetting number

e Can recover original sequence number if client
responds

14

CONNECT/ SYN (Step 1 of the 3-way-handshake)

................. - unusual event
g Client/receiver path (smt)_ a@fecccnsssiiiitissccsnnnsssiitttsssscnnnnssitiaay
CLOSEI- :
—p serverisender path LISTEN/- A -
: CLOSEN
(Step 2 of the 3-way-handshake)SYNISYN+ACK LISTEN :
| A
Y
RSTI- : : SEND/ SYN
SYN .. . R L L L LD) SYN
RECEIVED | . SYNISYN+ACK (simultaneous open) SENT
Data exchange occurs
ACKI- . SYN+ACKIACK
(Step 3 of the 3-way-handshake)
- CLOSE/FIN
: CLOSE/ FIN FINIACK
| Active CLOSE Passive CLOSE :
|
: Y FINIACK - ' :
: FINWAITL | CLOSING 2 CLOSE WAIT :
: FIN+ACKIACK : :) |
¢ : 1 [:
| H H
i ACK- | ACK. E E CLOSE/FiN :
! : 1 I :
: § 1 | |
i Y Vo Y :
| |
: FIN WAIT 2 : TIME WAIT | | LAST ACK :
i FINIACK : : :
: Timeout | : ACKI :
L | N

(6o back to start) _<

Connection release

Client

Client State

| EsTABLISHED |

Receive Close
¥ Signal From App,
Send FIN
[Fn-war |
Wait for ACK and
l FIN From Server

Receive ACK
[FPn-war2 |

Wait for Server FIN

Receive FIN,
Send ACK

[TimEwar |

o

Y-

¥

Wait For Double
Maximum segment
Life (MSL) Time

¥
[crosen |

#1
FIN

#2
ACK

Server

Server State

| EsTABLISHED |

Normal Operation

Receive FiIN,
Send ACK,
Tell App To Close

| cLose-warr |

(Wait for App)

App Is Ready To
Close, Send FIN

| rastack |

Wait for ACK
to FIN

Receive ACK

| crosep |

http://www.tcpipguide.com/free/t TCPConnectionTermination-2.htm

16

TCP extensions

* Timestamp option
— Timestamp added to segment by the sender
— Echoed by the received
— Sender can then compute RTT

— Also can be combined with sequence number
* Protects against wraparound

* Large window option
— Use a scale factor
— Left shift window size field by up to 14 bits
— Windows of up to 23° bytes

TCP extensions

e Selective acknowledgements (SACK)

— Optional header fields used to acknowledge additional
blocks

— Sender can then resubmit only missing blocks

 Maximum Segment Size (MSS)
— Only valid extension during connection setup
— Set a non-default value for maximum segment size

Flow & congestion control

* Flow control

— Prevent senders from
overrunning receiver

Initial
sequence

Sequence numbers number

(Circumference = 0 to 2"32 slots)

— Window size in
segments

Data received, acknowledged,
but not yet delivered to application

* Congestion control

— Prevent injecting too
much data into network

Window
shifts

— Don't want to overload
links

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

19

TCP sliding window

Sender Receiver Receivers
Application buffer
doesa 2K — =
write g ax
Empty
2K
Application
doesa 2K —
write (
Full
Senderis) Application
blocked " reads 2K
2K
Sender may
send up to 2K —=
1K 2K

20

TCP sliding window

* Windows size =0
— Bytes up to an including ACK # - 1 have been received
— Receiver has not consumed data so don't send more
— When ready, receiver issues same ACK # and non-zero
— Provides the flow-control in TCP

e Sender can still send:

— Urgent requests (kill the process)
— Periodic window probe frames, see if window has opened

* Prevents deadlock should the receiver's windows update get lost
* Persistence timer

Improving performance

 TCP does not require:
— Senders send data immediately
— Receivers deliver data immediately

 Delayed acknowledgements

— Receiver has pending ACK
* Wait before sending (< 500ms)

— |If data arrives, piggyback on ACK
— Reduces load on network by receiver

Silly Window Syndrome

Receiver's buffer is full

l

Application reads 1 byte

-<—— Room for one more byte

l

-— Header

Window update segment sent

Header

*> New byte arrives

/

1 Byte

l

Receiver's buffer is full

N

23

Nagle's Algorithm

e Sender-side silly window avoidance

e Application produces data to send
— If >= MSS, send segment
— If no segments in flight, send the segment
— Otherwise queue the data

e Limits to one small segment in network
— But bad for interactive apps like gaming

— Especially bad if combined with delayed ACKs
* write byte, write byte, read byte

— Can be disabled, TCP_NODELAY option

Clark's solution

* Receiver-side silly window avoidance

Do not send window size update unless:

— |t can handle full MSS size
— Half of its buffer is empty

25

TCP timeouts

 TCP is reliable transport
— Transmits data if ACK not recv'd in certain time

— But what timeout value to use?

— RTT times vary widely on the Internet

03

Probability
o
[
I

o
—
l

)

|

|

|

%

ACK arrival times, point-to-point

10

20

30

40

Round-trip time (microseconds)

50

Probability

0.3

o
N

>

e
—

0

ACK arrival times, Internet

-

T

|
|
|
|
|
|
|
|
|
|
:
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
1

0

10

Round-trip time (milliseconds)

20

30

40

50

Simple adaptive timeout

 Smoothed Round-Trip Time (SRTT)

— Start timer whenever you send segment
— When ACK arrives, let R = RTT of segment
— Exponentially weighted moving average:

SRTT = a(SRTT) + (1-a)R
Timeout = 2(SRTT)

a typically 0.8 or 0.9

Simple adaptive timeout

Problem 1: Timeout formula uses constant value (2)
— Does not respond to variance in data

— Delays become highly variable under high load

— Timing out early just makes things worse

Problem 2: Updating SRTT on retransmitted frames

Sender Receiver Sender Receiver

SampleRTT
SampleRTT

28

Improved adaptive timeout

 Problem 1: Timeout formula uses constant value (2)

 Solution 1: Take variance into account
— Jacobson/Karel's algorithm

SRTT = a(SRTT) + (1-a)R

RTTVAR = B(RTTVAR) + (1-B) |SRTT-R|
Timeout = SRTT + 4(RTTVAR)

a typically 0.8 or 0.9

B typically 0.75

29

Improved adaptive timeout

* Problem 2: Updating SRTT on retransmitted frames

e Solution 2: Don't do that
— Karn/Partidge algorithm, 1987
— Ignore RTT's of packet that were retransmitted

— Also double timeout value when retransmitting
(exponential backoff)

Sender Receiver Sender Receiver

SampleRTT

30

Staying Alive

* TCP keep-alive timer

— If connection is idle > timeout, send a frame to see
if other side still alive

— Checking for dead peer

— Prevent disconnection due to inactivity

* NAT box might drop your state if you don't
communicate once in awhile

Summary

* TCP protocol
— Reliable byte-oriented delivery
— TCP segments
— Connection setup/shutdown
— Flow control via window size feedback
— Avoiding silly window syndrome

* Nagel's algorithm, Clark's algorithm

— Adaptive timeouts
 Jacobson/Karel's algorithm, Karn/Partidge algorithm

