Transport layer and UDP

Client CPU Server CPU
7 Client Server,
TN stub stub
Client)
2 4
Operating system ‘.’ Operating system
L 3 /

CSCl 466: Networks Keith Vertanen e Fall 2011

Overview

* Principles underlying transport layer
— Multiplexing/demultiplexing
— Detecting errors
— Reliable delivery
— Flow control

 Major transport layer protocols:
— User Datagram Protocol (UDP)
e Simple unreliable message delivery

— Transmission Control Protocol (TCP)
* Reliable bidirectional stream of bytes

End host

Application

Presentation

Session

Transport J
N

Network

| Data link

Physical

Transport layer challenges

* Running on best-effort network:
— Messages may be dropped
— Messages may be reordered
— Duplicate messages may be delivered
— Messages have some finite size
— Messages may arrive after long delay

 Sender must not overrun receiver
 Network may be congested

* Hosts must support multiple applications

Internet layering model

host host

HTTP message
<_ ___

TCP segment

router

<_____'_'?_Eac_k?_t_______ng!’_pﬁ_c_'s_ea!__

Ethernet
interface

Ethernet SONET
interface interface

SONET Ethernet
interface interface

Ethernet

interface

Segments

* Segment

— Message sent from one transport entity to
another transport entity

— Term used by TCP, UDP, other Internet protocols
— AKA TPDU (Transport Protocol Data Unit)

Frame Packet TPDU
header header header

/
4 a

TPDU payload

- Packet payload -

- Frame payload >

Transport layer

e Goal: Provide end-to-end data transfer
— Just getting to host machine isn't enough

— Deliver data from process on sending host to
correct process on receiving host

* Solution: OS demultiplexes to correct process
— Port number, an abstract locater

— OS demuxes combining with other info
« UDP <port, host>
* TCP <source port, source IP, dest port, dest IP>

Simple demultiplexer

e User Datagram Protocol (UDP)
— Mapping to process using 16-bit port number
— Detecting errors: (optional) checksum

0 16 31 process

SrcPort DstPort W r [
| Ports ———»

Length Checksum

Data

Why use UDP?

* Provides:
— Lightweight communication between processes
— Avoid overhead and delays of ordered, reliable delivery
— Precise control of when data is sent

e As soon as app writes to socket, UDP packages and sends
— No delay establishing a connection
— No connection state, scales to more clients

— Small packet overhead, header only 8 bytes long
* Does not provide:

— Flow control, congestion control, or retransmission on
error

e UDP checksum

UDP checksums

— Add up 16-bit words in one's complement

— Take one's complement of the sum

— Done on UDP header, data, IP pseudoheader
* Helps detect misdelivered packets

 Violates layers, looking into network layers

16

31

SrcPort

Length

DstPort

Checksum

Data

UDP header

32 Bits

Source address

00000000

Destination address

Protecel = 17 UDP length

IP pseudoheader

Port numbers

* How do clients know the port number?
— Well known port number

— Port mapper service
* Listens for request on known port number
* Maps service name such as "BitTorrent" to port number

m m

20/21 HTTP

22 SSH 110 Post Office Protocol (POP3)

23 Telnet 143 Internet Message Access Protocol (IMAP)
25 Simple Mail Transfer Protocol (SMTP) 443 HTTPS

53 Domain Name System (DNS) 546/7 DHCP

10

Port numbers

How do clients know the port number?

— Initial connection protocol (e.g. inetd, xinetd, launchd)
* Process server acts a proxy for less used services
* Listens on set of ports at same time
* Clients specify service in connection request

Host 1 Host 2 Host 1 Host 2
N
/ Mait'\
| server|
Layer| I I I '-.\\ /,,,'
- g - N
l,/ User \\' ' Process\-.: I/ User \.l 'd Process\\ T
I_ ___/ "\ Server / .) /’ __Server,_ J
L 2 L 2 43 L 2 ./Z\. * * '—m—ﬁ—
4
TSAP
- .

(a) (b)

Connection request
TPDU received

Berkeley Sockets

Connect primitive

executed

------------------- IDLE
’
[}
I
¥)
PASSIVE ACTIVE
ESTABLISHMENT ESTABLISHMENT
PENDING PENDING
T
E Connect primitive Connect/on'acceptedJ
(. e _XP_C_UEG_CL ESTABLISHED TPDU received
T
i
Disconnection 1 Disconnect
request TPDU 1 primitive
PASSIVE received ,: executed ACTIVE
DISCONNECT |a=mmmmmmmm e e e s DISCONNECT
PENDING PENDING

primitive executed

........... - IDLE

Disconnect

J

Disconnection request

TPDU received

A state diagram for a simple
connection management
scheme.

Transitions labeled in italics
are caused by packet
arrivals.

The solid lines show the
client’s state sequence.

The dashed lines show the
server’s state sequence.

12

Berkeley Sockets

Primitive Meaning

SOCKET Create a new communication end point

BIND Associate a local address with a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Passively establish an incoming connection

CONNECT | Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

server [cient [Mlserver |Clent |

SOCKET SOCKET SOCKET SOCKET
BIND CONNECT BIND SENDTO/RECVFROM
LISTEN SEND/RECEIVE (SENDTO/RECVFROM)* CLOSE
ACCEPT CLOSE CLOSE
(SEND/RECEIVE)* Sequence for unconnected sockets.

CLOSE

Sequence for connected sockets. 13

Sending and receiving

e Connected sockets

int send(int sockfd, const void *msg, int len, 1nt flags);

int recv(int sockfd, wvoid *buf, int len, int flags);

sockfd - socket descriptor

msqg - pointer to buffer to be sent/received
len - length of buffer

flag - normally O

Returns bytes sent or received.

NOTE: underlying protocol could be TCP or UDP

14

Sending and receiving

* Unconnected datagram sockets

int sendto(int sockfd, const void *msg, int len, int flags,

const stuct sockaddr *to, socklen t tolen);

int recvfrom(int sockfd, void *buf, int len, int flags,

struct sockaddr *from, int *fromlen);

sockfd - socket descriptor

msqg - pointer to buffer to be sent/received
len - length of buffer

flag - normally O

to — address to send the datagram to

from — address of who sent the datagram

Returns bytes sent or received.

15

Type of UDP apps, part 1/3

e Simple query protocols
— Overhead of connection establishment is overkill
— Easier to have application retransmit if needed
— e.g. DNS, UDP port 53

@
y

/m
N WWW . Cnn.com? _ |I
@@/EM\‘ o JSLT!

2.3.4.157 __—

— e.g. DHCP, UDP port 67/68

@
F oaceorscover T
@ L Tk

— o S—1192.168.1.307__—

16

Type of UDP apps, part 2/3

* Request/reply style interaction

— Client sends request to server clen Server
* Blocks while waiting for reply Reques Blocked
— Server responds with reply siocke]c(,mpmmg
— Must deal with: = _—
* |dentify process that can handle
request

* Possible loss of request or reply
e Correlate request with reply

Request/reply example

e Remote Procedure Call (RPC)

— Request/reply paradigm over UDP

— Allow programs to call procedures located on a
remote host

— Invisible to the application programmer

* Client code blocks while request made and response
waited for from remote host

— Object-oriented languages:
« Remote Method Invocation(RMI), e.g. Java RMI

RPC mechanism

e Client stub

— Represents server procedure in client's address space

e Server stub

— Hides fact that procedure call from client is not local to the

server

* Usually create by a stub compiler

Client CPU

7
Client

W)

Client
stub

Server CPU

Operating syste

mY

Server,
stub

TN
A |Server

4

'L

+ Operating system

)

Network

19

Client CPU

RPC steps

Server CPU

i
@\

2

Client
stub

Server,
stub

T
A |Server

4

Operating system Y

A Operating system

!

)

Network

Step 1 - Client calls the client stub, a local procedure call, parameters

pushed on to stack in normal way

Step 2 - Client packages parameters into a message, "marshaling"

Step 3 - Client OS sends the message to server machine

Step 4 - Server OS passes message to server stub

Step 5 - Server OS calls server procedure with unmarshaled parameters

20

RPC challenges

 RPC challenges C? ‘CL;i
- MarShaling pOinte rS Operating system '2 4l‘Operatingsys,tem
* Call by reference L 3 J

— e.g. Pointer to integer

Network

* Passing pointer to a complex structure, e.g. graph

— Parameter size may be uncertain
e e.g. Vector dot product using special termination flag

— Global variables
— Operations may not be idempotent

* Not safe to repeat, e.g. incrementing a counter

21

RPC problems

* RPC protocol must:
1. Name space to uniquely ID each procedure
2. Match each reply with corresponding request

3. Work on a best-effort network

* Messages may be lost, corrupted, duplicated, delayed,
may exceed size limit, etc.

Client CPU Server CPU

7 Client Server,
TN stub stub TN
Client A |server
2

Operating system Y A Operating system

.

Network

22

Specifying RPC names

* Problem 1: Identifying a procedure

— Flat scheme
* Single ID field carried in RPC request
* Requires central authority to assign ID
e e.g. Simple integer ID
— Hierarchical
* Two or more level name space

e e.g. SUnRPC, 32-bit program #, 32-bit procedure #
— Program number 0x00100003 = NFS
— Procedure number 1 = getattr, 2 = setattr, 6 = read, ...

Matching RPC replies

* Problem 2: Matching requests to replies
— Message ID on request
— Reply contains same message ID

— Simple scheme, client starts at 0 and counts up

* But what if client reboots?
— Client sends message with ID O
— Client crashes, reboots, sends new request ID 0
— Servers already replied to first one
— Server discards as duplicate
— Client never gets response to new request

* Add boot ID from nonvolatile storage to message ID

Reliable RPC

* Problem 3: Work on best-effort network
— UDP/IP does not provide reliable transport

— Messages may get corrupted, duplicated,
dropped, delayed, etc.

— Use timeouts and ACKs

Client Server

ReQUe St
e

RrepY

ACK

Timeline for reliable RPC protocol

25

Reliable RPC

* Explicit ACKs seen unnecessary

— Reply is implicit ACK of the
request

Client Server

— Next request is implicit ACK of
the previous reply

— But we can't send a new request
until previous one is done

* Server may block on I/O for a long

time Timeline for reliable
RPC protocol using
» Severely limits RPC performance implicit

acknowledgements.

26

Reliable RPC

Concurrent logical channels
— Only one request per channel
— Multiple channels with different channel IDs

Client Server Client Server Client Server

Channel 1 Channel 2 Channel 3

27

Reliable RPC

 What if server crashes serving request?
— Client would be waiting forever
— Client could send "Are you alive?" messages

— Server could send "I'm alive" messages

 What if duplicate requests are made?

— Servers may implement at-most-once semantics

» Server remembers current sequence number on a
particular channel

* Only service next expected request

28

Type of UDP apps, part 3/3

* Multimedia streaming
— e.g. Voice over IP, video conferencing
— Time is of the essence

* By time packet is retransmitted, it's too late!
* Interactive applications:

— Human-to-human interaction

— e.g. conference, first-person shooters
e Streaming applications:

— Computer-to-human interaction

— e.g. Netflix, Spotify

RTP

e Real-time Transport Protocol (RTP)
— Generic real-time transport protocol
— How to transport audio/video data in packets
— Processing to play at right time

Ethernet IP UDP RTP
header header header header

User{ Multimedia application

space RTP
Socket interface RTP payload
UDP
Kerﬁj { IP <~—— UDP payload ———
Ethernet - IP payload -
- Ethernet payload >~

(a) (b)

RTP

* Real-time Transport Protocol (RTP)

— Multiplexes several real-time streams into single
UDP stream

— Sent to single destination (unicast) or multiple
destinations (multicast)

— Provides:
* Number of packets
» Header specifying type of encoding (e.g. MP3,
* Time stamping of samples

RTP header

N 32 bits -
N A I A I O O |]|

Ver. |P|X CC M Payload type Sequence number

Timestamp

Synchronization source identifier

Contributing source identifier

__

Payload type - encoding algorithm used
Sequence number - counter incremented on each packet sent

Timestamp - produce by stream's source, when first sample
in packet was made. Decouples playback from packet arrival.

Synch. source ID - which steam this packet belongs to

Contributing source ID - used when mixes present

32

RTCP

e Real-time Transport Control Protocol (RTCP)

— Provides feedback on network
* Delay, variation in delay, jitter, bandwidth, congestion
* Allows RTP to adjust to different encoding schemes

— Interstream synchronization

» Different streams may use different clocks
* Helps keep them in synch

— Naming of stream sources
» e.g. ASCI| text for whoever is speaking right now

RTP playback

* Playback using RTP
— Packets may arrive out of order
— Buffer a certain amount so receiver can reorder

* Long buffer possible for streaming apps
* Short buffer needed for interactive apps

Packet depats souce 2 4 6
1 2 3

Packet arrives at buffer

8
5

7
:

Packet removed from buffer |< Time in buffer = @ 8
<—>Gap in payback

Lo oy by

0 5 10 15 20
Time (sec)

7
4

34

Summary

* Transport layer

— Providing end-to-end process communication
* Port numbers allow multiple processes per host

— Provide reliable transport on best-effort network

e User Datagram Protocol (UDP)
— Lightweight protocol running on top of IP

— Three typical classes of applications:
e Simple queries (DNS, DHCP)
e Request/reply semantics (RPC)
e Real-time data (RTP)

