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Overview

* Principles underlying transport layer
— Multiplexing/demultiplexing
— Detecting errors
— Reliable delivery
— Flow control

 Major transport layer protocols:
— User Datagram Protocol (UDP)
e Simple unreliable message delivery

— Transmission Control Protocol (TCP)
* Reliable bidirectional stream of bytes
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Transport layer challenges

* Running on best-effort network:
— Messages may be dropped
— Messages may be reordered
— Duplicate messages may be delivered
— Messages have some finite size
— Messages may arrive after long delay

 Sender must not overrun receiver
 Network may be congested

* Hosts must support multiple applications
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Segments

* Segment

— Message sent from one transport entity to
another transport entity

— Term used by TCP, UDP, other Internet protocols
— AKA TPDU (Transport Protocol Data Unit)
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Transport layer

e Goal: Provide end-to-end data transfer
— Just getting to host machine isn't enough

— Deliver data from process on sending host to
correct process on receiving host

* Solution: OS demultiplexes to correct process
— Port number, an abstract locater

— OS demuxes combining with other info
« UDP <port, host>
* TCP <source port, source IP, dest port, dest IP>



Simple demultiplexer

e User Datagram Protocol (UDP)
— Mapping to process using 16-bit port number
— Detecting errors: (optional) checksum
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Why use UDP?

* Provides:
— Lightweight communication between processes
— Avoid overhead and delays of ordered, reliable delivery
— Precise control of when data is sent

e As soon as app writes to socket, UDP packages and sends
— No delay establishing a connection
— No connection state, scales to more clients

— Small packet overhead, header only 8 bytes long
* Does not provide:

— Flow control, congestion control, or retransmission on
error



e UDP checksum

UDP checksums

— Add up 16-bit words in one's complement

— Take one's complement of the sum

— Done on UDP header, data, IP pseudoheader
* Helps detect misdelivered packets

 Violates layers, looking into network layers
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Port numbers

* How do clients know the port number?
— Well known port number

— Port mapper service
* Listens for request on known port number
* Maps service name such as "BitTorrent" to port number

m m

20/21 HTTP

22 SSH 110 Post Office Protocol (POP3)

23 Telnet 143 Internet Message Access Protocol (IMAP)
25 Simple Mail Transfer Protocol (SMTP) 443 HTTPS

53 Domain Name System (DNS) 546/7 DHCP
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Port numbers

How do clients know the port number?

— Initial connection protocol (e.g. inetd, xinetd, launchd)
* Process server acts a proxy for less used services
* Listens on set of ports at same time
* Clients specify service in connection request
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Connection request
TPDU received

Berkeley Sockets
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connection management
scheme.

Transitions labeled in italics
are caused by packet
arrivals.
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client’s state sequence.

The dashed lines show the
server’s state sequence.
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Berkeley Sockets

Primitive Meaning

SOCKET Create a new communication end point

BIND Associate a local address with a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Passively establish an incoming connection

CONNECT | Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

server  [cient  [Mlserver  |Clent |

SOCKET SOCKET SOCKET SOCKET
BIND CONNECT BIND SENDTO/RECVFROM
LISTEN SEND/RECEIVE (SENDTO/RECVFROM)*  CLOSE
ACCEPT CLOSE CLOSE
(SEND/RECEIVE)* Sequence for unconnected sockets.

CLOSE

Sequence for connected sockets. 13



Sending and receiving

e Connected sockets

int send(int sockfd, const void *msg, int len, 1nt flags);

int recv(int sockfd, wvoid *buf, int len, int flags);

sockfd - socket descriptor

msqg - pointer to buffer to be sent/received
len - length of buffer

flag - normally O

Returns bytes sent or received.

NOTE: underlying protocol could be TCP or UDP
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Sending and receiving

* Unconnected datagram sockets

int sendto(int sockfd, const void *msg, int len, int flags,

const stuct sockaddr *to, socklen t tolen);

int recvfrom(int sockfd, void *buf, int len, int flags,

struct sockaddr *from, int *fromlen);

sockfd - socket descriptor

msqg - pointer to buffer to be sent/received
len - length of buffer

flag - normally O

to — address to send the datagram to

from — address of who sent the datagram

Returns bytes sent or received.
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Type of UDP apps, part 1/3

e Simple query protocols
— Overhead of connection establishment is overkill
— Easier to have application retransmit if needed
— e.g. DNS, UDP port 53

@
y

/m
N WWW . Cnn.com? _ |I
@@/EM\‘ o JSLT!

2.3.4.157 __—

— e.g. DHCP, UDP port 67/68

@
F  oaceorscover T
@ L Tk

— o S—1192.168.1.307__—

16



Type of UDP apps, part 2/3

* Request/reply style interaction

— Client sends request to server  clen Server
* Blocks while waiting for reply Reques Blocked
— Server responds with reply  siocke ]c(,mpmmg
— Must deal with: = _—
* |dentify process that can handle
request

* Possible loss of request or reply
e Correlate request with reply



Request/reply example

e Remote Procedure Call (RPC)

— Request/reply paradigm over UDP

— Allow programs to call procedures located on a
remote host

— Invisible to the application programmer

* Client code blocks while request made and response
waited for from remote host

— Object-oriented languages:
« Remote Method Invocation(RMI), e.g. Java RMI



RPC mechanism

e Client stub

— Represents server procedure in client's address space

e Server stub

— Hides fact that procedure call from client is not local to the

server

* Usually create by a stub compiler
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Client CPU

RPC steps

Server CPU

i
@\

2

Client
stub

Server,
stub

T
A |Server

4

Operating system Y

A Operating system

!

)

Network

Step 1 - Client calls the client stub, a local procedure call, parameters

pushed on to stack in normal way

Step 2 - Client packages parameters into a message, "marshaling"

Step 3 - Client OS sends the message to server machine

Step 4 - Server OS passes message to server stub

Step 5 - Server OS calls server procedure with unmarshaled parameters
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RPC challenges

 RPC challenges C? ‘CL;i
- MarShaling pOinte rS Operating system '2 4l‘Operatingsys,tem
* Call by reference L 3 J

— e.g. Pointer to integer

Network

* Passing pointer to a complex structure, e.g. graph

— Parameter size may be uncertain
e e.g. Vector dot product using special termination flag

— Global variables
— Operations may not be idempotent

* Not safe to repeat, e.g. incrementing a counter
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RPC problems

* RPC protocol must:
1. Name space to uniquely ID each procedure
2. Match each reply with corresponding request

3. Work on a best-effort network

* Messages may be lost, corrupted, duplicated, delayed,
may exceed size limit, etc.
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Specifying RPC names

* Problem 1: Identifying a procedure

— Flat scheme
* Single ID field carried in RPC request
* Requires central authority to assign ID
e e.g. Simple integer ID
— Hierarchical
* Two or more level name space

e e.g. SUnRPC, 32-bit program #, 32-bit procedure #
— Program number 0x00100003 = NFS
— Procedure number 1 = getattr, 2 = setattr, 6 = read, ...



Matching RPC replies

* Problem 2: Matching requests to replies
— Message ID on request
— Reply contains same message ID

— Simple scheme, client starts at 0 and counts up

* But what if client reboots?
— Client sends message with ID O
— Client crashes, reboots, sends new request ID 0
— Servers already replied to first one
— Server discards as duplicate
— Client never gets response to new request

* Add boot ID from nonvolatile storage to message ID



Reliable RPC

* Problem 3: Work on best-effort network
— UDP/IP does not provide reliable transport

— Messages may get corrupted, duplicated,
dropped, delayed, etc.

— Use timeouts and ACKs

Client Server

ReQUe St
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Timeline for reliable RPC protocol
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Reliable RPC

* Explicit ACKs seen unnecessary

— Reply is implicit ACK of the
request

Client Server

— Next request is implicit ACK of
the previous reply

— But we can't send a new request
until previous one is done

* Server may block on I/O for a long

time Timeline for reliable
RPC protocol using
» Severely limits RPC performance implicit

acknowledgements.
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Reliable RPC

Concurrent logical channels
— Only one request per channel
— Multiple channels with different channel IDs

Client Server Client Server Client Server

Channel 1 Channel 2 Channel 3
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Reliable RPC

 What if server crashes serving request?
— Client would be waiting forever
— Client could send "Are you alive?" messages

— Server could send "I'm alive" messages

 What if duplicate requests are made?

— Servers may implement at-most-once semantics

» Server remembers current sequence number on a
particular channel

* Only service next expected request
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Type of UDP apps, part 3/3

* Multimedia streaming
— e.g. Voice over IP, video conferencing
— Time is of the essence

* By time packet is retransmitted, it's too late!
* Interactive applications:

— Human-to-human interaction

— e.g. conference, first-person shooters
e Streaming applications:

— Computer-to-human interaction

— e.g. Netflix, Spotify




RTP

e Real-time Transport Protocol (RTP)
— Generic real-time transport protocol
— How to transport audio/video data in packets
— Processing to play at right time

Ethernet IP UDP RTP
header header header header

User{ Multimedia application

space RTP
Socket interface RTP payload
UDP
Kerﬁj { IP <~—— UDP payload ———
Ethernet - IP payload -
- Ethernet payload >~

(a) (b)



RTP

* Real-time Transport Protocol (RTP)

— Multiplexes several real-time streams into single
UDP stream

— Sent to single destination (unicast) or multiple
destinations (multicast)

— Provides:
* Number of packets
» Header specifying type of encoding (e.g. MP3,
* Time stamping of samples



RTP header

N 32 bits -
N A I A I O O | ]|

Ver. |P|X CC M Payload type Sequence number

Timestamp

Synchronization source identifier

Contributing source identifier

________________________________________________________________________

Payload type - encoding algorithm used
Sequence number - counter incremented on each packet sent

Timestamp - produce by stream's source, when first sample
in packet was made. Decouples playback from packet arrival.

Synch. source ID - which steam this packet belongs to

Contributing source ID - used when mixes present
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RTCP

e Real-time Transport Control Protocol (RTCP)

— Provides feedback on network
* Delay, variation in delay, jitter, bandwidth, congestion
* Allows RTP to adjust to different encoding schemes

— Interstream synchronization

» Different streams may use different clocks
* Helps keep them in synch

— Naming of stream sources
» e.g. ASCI| text for whoever is speaking right now



RTP playback

* Playback using RTP
— Packets may arrive out of order
— Buffer a certain amount so receiver can reorder

* Long buffer possible for streaming apps
* Short buffer needed for interactive apps
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Summary

* Transport layer

— Providing end-to-end process communication
* Port numbers allow multiple processes per host

— Provide reliable transport on best-effort network

e User Datagram Protocol (UDP)
— Lightweight protocol running on top of IP

— Three typical classes of applications:
e Simple queries (DNS, DHCP)
e Request/reply semantics (RPC)
e Real-time data (RTP)



