Scaling up routing

Large corporation
/ \ “Consumer” ISP

“Consumer” ISP
Large corporation
Small
corporation

“Consumer”’ ISP

CSCl 466: Networks  Keith Vertanen e Fall 2011



Overview

e Last time:

— Intradomain routing
e Distance-vector (RIP, EIGRP)
 Link-state (OSPF)

* This time:
— Scaling to a global network

— Interdomain routing
* Path-vector



The Internet: 1969
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The Internet: 1971
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The Internet: 1973

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973
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The Internet: 1975
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The Internet: 1977

ARPANET LOGICAL MAP, MARCH 1977

POP- DATA - poP-11 | [DEC- PLURIBUS
Feo] EXER For] [oe ] FoP-® et {feee poso) Jromens)
POP-T0 MOFFETT 8L UTAM ILLINOIS wPaFe (FoF=io] .
PLI J— Y hd ' e MITE
X POP-10
POP-I1 38087 16180
POP-11 |Poe-n - 7 SPS-41
wawan | lece PoP10) 2 spe- SR T 44 POP 10 POP-11
POP 11 — PDP-10
. (L0 g
AMES 16 SAI S POP -1 49
0% POP- 11 POP 11} | x¢ rox DE!
[POP-i1] POP-10 T LINCOLN : Jeendo |E
NOVA - 600 88N 30 POP-11
RADC
[PoP-10) MAXC2 OEC COCT600
SUMEX TYMSHARE POP-11 COCB600
sumyk o o VARIAN 73 -1 < =
370/19%
— POP-10) | o POP- 11
POP-10 GWC POP -1t : - NYU
Foe o spsai] CDCG500 Ll POP- 10 UNIVAC-1108]
POP - 11 ~{coc3200 e "PDP-11
UNIVAC 1108 SCAL b3z ] 8 SELVOI RUTGERS -
H716 " ABERDEEN
POP -1 360/44 POP- 1N
- uera | POP-1 e SDAC NORSAR
POP1 \ 360/91 360/40 360/4
NUC POP-1! POP-10 360/40 NSA /40
ARPA
P NELC - LURIBUS e o N8BS {J LonDON
FPS AP-120 LBoP-10 0P-9
I o ] L X X
POP-II [370-158 AND poP - 11] | POP-15] for el POP-1
2040 =10 POP-1 84700 XGP
POP-10 %GP [WPOP 1] = T v 7P0P-9
o o WA ° com LR
15122 AFWL TEXAS GUNTER EGLIN PENTAGON |\ 0
P POP-11
L €DC6400
O IMP A PLURIBUS IMP CDC6600 B855C0 COC 6600
O TIP v SATELLITE CIRCUIT . €OC 7600

(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OBTAINABLE ,NO CLAIM CAN BE MADE FOR ITS ACCURACY )

NAMES SHOWN ARE IMP NAMES. NOT INECESSARILY) HOST NAMES




The Internet: 1979

ARPANET LOGICAL MAP, MARCH 1979
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The Internet: 1987

NSFNet Physical Connectivity - April 87
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* For some networks internal structure (e.g subnets) is suppressed. " s




The Internet: 1999
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Distance-vector vs. Link-state

Knowledge of neighbors' distance to
destinations

Router has O(# neighbors * # nodes)

Messages only between neighbors

Trust a peer's routing computation

Bellman-Ford algorithm

Enhanced Interior Gateway Routing
Protocol (EIGRP)
Proprietary Cisco protocol

Advantages:
Less info has to be stored
Lower computation overhead

Knowledge of every router's links
(entire network graph)

Router has O(# edges)

Messages between all nodes

Trust a peer's info
Do routing yourself

Dijkstra's algorithm

Open Shortest Path First (OSPF)
Open protocol standard

Advantages:
Fast to react to changes
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Shortest path routing

* Problems with always taking shortest path:
— All traffic must travel on shortest path
— All nodes must do same link cost calculation
— Not possible to enforce various business rules

National National
ISP 1 -| ISP 2 '
Regional ISP 1 Regional ISP 2 Regional ISP 3

Customer 1 Customer 2 Customer 3
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Shortest path routing

* Example: customer 3 talking to customer 1
— Shortest path transits Regional ISP 2
— Regional ISP 2 isn't being paid by either customer

National National

ISP 1 -| ISP 2 -
Regiona' 5P 1 )—gl Regional ISP 2 o Region ISP 3

Customer 1 Customer 2 Customer 3
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Shortest path routing

* Example: customer 3 talking to customer 1
— Goes through National ISP 1 & 2
— Regional 3 is paying National ISP 2
— Regional 1 is paying National ISP 1

-vauional —— National

I ISP 1 -| ISP 2 -
Regir /nal ISP 1 Regional ISP 2 Region: | ISP 3

Customer 1 Customer 2 Customer 3
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Shortest path routing

* Example: customer 3 talking to customer 2
— Regional 2 and 3 are peered

— Avoid going through National ISP 2 since then
both regionals would incur expense

National National
ISP 1 - ISP 2 '
Regional ISP 1 Regional "5P 2 Pt region ISP 3

Customer 1 Customer 2 Customer 3
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Other routing issues

* Policies may be political, security, or
economic:

— Some examples (Tanenbuam):
* Don't carry commercial traffic on educational network
* Never send Pentagon traffic through Iraqg

e Use TeliaSonera instead of Verizon because it is
cheaper

Don't use AT&T in Australia because performance is
poor

Traffic starting or ending at Apple should not transit
Google



Link-state, disadvantages

Floods topology information

— High bandwidth and storage requirements

— Nodes divulge potentially sensitive information
Entire path computed locally

— High processing overhead for large network

Distance calculation hides information
— Everyone has to have a shared notion of link cost

Typically used within one organization

— Autonomous System (AS)
* e.g. university, company, ISP

— Popular link-state protocols: OSPF, IS-IS

17



Distance-vector

* Disadvantages:
— Count to infinity, "bad news travels slow"
— Slow to converge
— Hides information that you might need in an interdomain
setting
* Advantages:

— Summarizes details of network topology
* Trades optimality for scalability

— Each node only needs to know about next hop



Path-vector routing

* Extension of distance-vector
— Support flexible routing policies
— Avoid count-to-infinity problem
* Key idea: advertise the entire path

— Distance vector: send distance metric per destination d
— Path vector: send the entire path per destination d




Detecting loops

e Path-vector can easily detect loop
— Look for your own node ID in the path
— e.g. node 1 sees itself in path "3, 2, 1"

* Node can discard paths with loops

— e.g. node 1 drops advertisement

“d: path (2,1)” “d: path (1)”
T

“d: path (3,2,1)” )

20




Flexible routing policies

* Each node can apply local policies:
— Path selection: Which path to use?
— Path export: Which path to advertise?

Node 1 may not export the
path "1, 2". Perhaps node 1
reserves the 1->2 link for
special traffic.

Node 2 may prefer the path
"2, 3, 1" over the path "2, 1".
Perhaps it is cheaper.

21



Scaling up

* How to scale a single company's network?
— Add a level of hierarchy

e Within a single organization (aka autonomous system)

— Routing areas
* Most routers in a single area

— Routers only send information within their area
— Detailed topology for only their area
— Traffic going outside of area, send to backbone

* Area 0 = backbone

— Some routers in both backbone and other area(s)
— Area Border Router (ABR)

22



Routing areas

Area 1

Area 0

R1, R2, and R3 are in the
backbone area.

R1is an ABR for area 1 and 2.

R2 is an ABR for area 2.
R3 is an ABR for area 3.

Area 3

23



Routing areas

e Contains information flow
— Link-state advertisements contained in your area
— Reduces cost of flooding and route calculation

e Summarizes information

— ABRs advertise cost of networks in their areas as if
directly connected to the ABR

* Non-optimal routing

— Going via backbone may not be the fastest route



Scaling up and up

 How to scale to the global Internet?
— Add another level of hierarchy!

— Routing amongst Autonomous Systems (ASes)
* Distinct regions of admin control
* Routers/links managed by a single institution
* ASes can use policy-based routing

— Interaction between ASes
* Neighboring ASes interact to coordinate routing

Customer P

(AS 4) 128.96

* Internal topology not shared

Regional provider A
(AS 2)

Customer Q
(AS 5)

Backbone network
(AS 1)

Customer R
(AS 6)

Regional provider B
(AS 3)

Customer S
(AS 7) 25



Autonomous System Numbers

 Each AS assigned a unique number
— Before 2007: AS Numbers 16-bit
— After 2007: IANA began allocating 32-bit AS numbers
— Currently over 50,000 allocated

e level3:1

e MIT:3

e Harvard: 11

e Yale: 29

e Princeton: 88

e AT&T: 7018, 6341, 5074, ...

e UUNET: 701, 702, 284, 12199, ...
e Sprint: 1239, 1240, 6211, 6242, ...



AS Count

Autonomous System Numbers
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AS stub

Large corporation

“Consumer” ISP

Large corporation

“Consumer’ ISP

Small
corporation

Stub AS
— Single connection to another AS
— AS only carries local traffic
— e.g. Small corporation, university
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AS multihomed

Large corpora@
/I \\
i

“Consumer” ISP

“Consumer” ISP
Large corporation
Small
corporation

Multihomed AS

— Connected to multiple ASes

“Consumer’ ISP

— Refuses to carry transit traffic

— Improves reliability




AS transit

Large corporation
f IR “ »
\ Consumer” ISP

Backbone service provider §. Peering

point
“Consumer” ISP

Peering
point

“Consumer” ISP

Large corporation
Small
corporation

Transit AS

— Connected to multiple ASes

— Designed to carry transit and local
traffic
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Peering point

Large corporation
/ \ “Consumer” ISP

“Consumer” ISP

Large corporation

Q\
Backbone service pro
§ “Consumer” ISP

Small
corporation

Peering point

— Allows ASes to connect directly,
bypassing a transit AS.
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Peering point

* Peering point
— Many networks come together in one location
— Exchange traffic

* reduce cost

e improve performance

* improve reliability
—e.g. DE-CIX

* One of the world's largest peering points

* 400 ISPs from 45+ countries
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DE-CIX daily graph

last update: Thu Oct 6 18:20:02 UTC 2011
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DE-CIX yearly graph

last update: Thu Oct 6 18:20:02 UTC 2011
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Interdomain routing

* AS-level topology
— Destinations are IP prefixes (e.g. 12.0.0.0/8)
— Nodes are Autonomous Systems (ASes)
— Edges are links and business relationships

Client Web server



Interdomain routing challenges

* Scale:

— |P prefixes: 200,000+

— ASes: 20K+ visible, 50k+ allocated

— Routers: millions
* Privacy:

— ASes don't want other to known topology

— ASes don't want business relationships exposed
* Policy:

— No internet-wide notion of link cost metric

— Need control over where you send traffic, who you send
traffic through, etc.



Border Gateway Protocol

* |Interdomain routing protocol for the Internet
— Prefix-based path-vector protocol

— Policy-based routing using AS paths

— Evolved over the past 18 years

e 1989:
e 1990:
e 1991:
e 1995:
e 2006:

BGP-1 [RFC 1105], replacement for EGP
BGP-2 [RFC 1163]

BGP-3 [RFC 1267]

BGP-4 [RFC 1771], support for CIDR
BGP-4 [RFC 4271], update



Summary

* Dealing with scale of Internet
— Separate into autonomous systems (ASes)

— Within an AS:
e Use an intradomain routing protocol (OSPF)
* Route optimally

— Between ASes:

* Use an interdomain routing protocol that routes
between ASes

* Path-vector routing allows scaling and implementation
of policy compliant paths

 Next: details of BGP, IPv6, NAT



