Network applications, requirements and architecture

CSCI 466: Networks • Keith Vertanen • Copyright © 2011

Overview

- Network applications
 - What kinds of things do we want to do?
- Network requirements
 - What do networks need to have in order to support our desired apps?
- Network architecture
 - How do we break things down to handle the complexity?

Applications

- For most people, the Internet = applications
 - Web surfing
 - Email

- Social networking (Facebook)
- Broadcast audio and video (YouTube, Netflix)
- Two-way audio and video (Skype)
- File sharing (BitTorrent)
- Instant messaging (Twitter)

Applications

- Virtual workplace (Amazon Mechanical Turk)
- Mega-mega mall (Amazon.com)
- Global supercomputer (SETI@home)
- Virtual reality (Second Life)
- Online gaming (World of Warcraft)
- Online voting
- Online whistleblowing

- ???

Requirement stakeholders

- Application programmer
 - Types of services needed by application
 - How much data is being sent?
 - How fast must it get there?
 - Guaranteed delivery?
 - Security?
- Network designer

Cost effective network with shared resources

• Network provider

- Network that is easy to manage

Requirement stakeholders

End user

- How easy is it to use?
- How expensive is it to use?
- How fast is it to use?
- How consistent is it to use?
- -???

4 requirements for networks

1. Scalable connectivity

- Nodes (i.e. computers) in a network must be able to communicate
- Support arbitrarily large networks

Point-to-point

- Connect with *point-to-point* cables
- Simple but not scalable

– Given n computer, (n-1) *links* to each

Multiple-access

- Connect using *multiple-access*
- Only one cable per computer
- A REAL PROPERTY OF
- Problem: contention for medium

Multiple-access

- Shared medium
 - No longer common for wired Ethernet
 - Very common for wireless

Multiple-access

- Shared medium
 - Also common for Internet over cable
 - 500-2000 houses on a cable

Switched networks

- Circuit switched
 - Initial setup of path through network
 - Every *packet* between node X and Y, same route
 - Example: public switch telephone network (PSTN)
 - Also increasingly in optical networks

Switched networks

- Packet switched
 - Packets between X and Y may take different routes
 - Example: most computer networks, Internet
 - Typically use *store-and-forward*

Switched networks

internetwork / internet

internet vs. Internet

internetwork / internet:

A set of independent networks interconnected, could be completely walled off from world.

Internet

Global public network consisting of interconnected networks running TCP/IP.

Message destination

?ANs

PANs	Personal area networks A few meters
LANs	Local area networks < 1 km
MANs	Metropolitan area networks Spans a city or large campus
WANs	Wide area networks Worldwide
SANs	Storage area networks Specialized high-performance network for providing storage

2. Cost-effective resource sharing

- How do we share a link?
 - *Multiplexing* sharing a resources by combining
 - **De-multiplexing** splitting back apart

Type of multiplexing

- Synchronous time-division multiplexing (STDM)

- Divide time up and go round-robin
- Frequency division multiplexing (FDM)
- Problems with STDM, FDM:
 - Node wastes link slot if idle
 - Need to know number of nodes ahead of time

Type of multiplexing

- Statistical multiplexing

- Nodes split arbitrarily long *messages* into *packets*
- Link decides which packet to send next
- Different scheduling algorithms: FIFO, round-robin, quality of service (QoS) based

3. Support for common services

- Logical channels
 - App-to-app communication path / pipe
 - Allows app to ignore details of network

How nodes talk

- *Client* makes a request
- Server provides the data
- Communication patterns
 - Request/reply
 - Guaranteed 1-to-1 delivery
 - Message stream
 - May not need guaranteed delivery (e.g. videoconferencing)
 - May want multicast

Reliability

- Network should hide errors
 - Bit errors 1 flips to 0, 0 flips to 1
 - Burst errors several errors in a row
- Packets lost
 - Unrecoverable bit error
 - Congestion at a switch
- Packets delayed
- Links or nodes may fail

4. Manageability

- Someone has to manage the network
 - Troubleshoot failures
 - Find performance bottlenecks
 - Configure large numbers of nodes
 - May be a non-expert

Network architecture

- How to manage complexity?
 - Use computer science secret sauce: abstraction
 - Layers hide details
 - Ignore details at layers above and below

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Network architecture

• May be alternates at a given layer:

Application	programs
-------------	----------

Process-to-process channels

Host-to-host connectivity

Hardware

Application programs				
Request/reply channel	Message stream channel			
Host-to-host connectivity				
Hardware				

Protocols

- Protocol provides a communication service
 - Service interface layer above talking to you
 - Peer-to-peer interface talking to counterpart at same layer

Protocol graphs & stacks

• Protocol graph:

- **Protocol stack** given set of protocols
 - RRP/HHP to send msg from Host 1 file app to Host
 2 file app
 - e.g. HTTP/TCP/IP

Encapsulation

- High-level messages *encapsulated* in low-level messages
 - headers/footer get added by each layer

OSI 7-layer model

OSI 7-layer model

- Physical layer
 - Transmission of raw bits
- Data link layer
 - Aggregate bits into *frames*
 - Network adapter + device driver
- Network layer
 - Message called a *packet*
 - Routes in a packet-switched network

These three layers are implemented on all network nodes!

OSI 7-layer model

- Transport layer
 - Process-to-process channel
 - Unit of data called a *message*
- Session layer
 - Name space for tying different streams
 - e.g. audio and video in a conferencing app
- Presentation layer
 - Format of data between peers
 - Big/little endian, bit width of integer
- Application layer
 - Standardize common types of exchanges
 - Protocols like HTTP, SMTP, IMAP

End host
Application
Presentation
Session
Transat
Transport
Network
Data link
Physical

Internet architecture

- Popular 4-layer model
- All roads go through IP

Internet protocol graph

Another view of the Internet architecture. Subnetwork is often called network or link layer.

Internet architecture

 No strict layering, application can bypass layers if need be

TCP

 New protocols: approval requires specification and working code

UDP

Subnetwork

IP

- Internet Engineering Task Force (IETF)

"We reject kings, presidents and voting. We believe in rough consensus and running code." -David Clark

Layers compared

Summary

- Networks support wide-variety of apps
- Many stakeholders:

Programmer, network designer/provider, end-user

- Scalable, cost-effective, reliable connectivity supporting common services
- Protocols, graphs & stacks
- 7-layer OSI and 4-layer Internet architectures