Network applications, requirements and architecture

Overview

- Network applications
- What kinds of things do we want to do?
- Network requirements
- What do networks need to have in order to support our desired apps?
- Network architecture
- How do we break things down to handle the complexity?

Applications

- For most people, the Internet = applications
- Web surfing
- Email
- Social networking (Facebook)

- Broadcast audio and video (YouTube, Netflix)
- Two-way audio and video (Skype)
- File sharing (BitTorrent)
- Instant messaging (Twitter)

Applications

- Virtual workplace (Amazon Mechanical Turk)
- Mega-mega mall (Amazon.com)
- Global supercomputer (SETI@home)
- Virtual reality (Second Life)
- Online gaming (World of Warcraft)
- Online voting
- Online whistleblowing
- ???

Requirement stakeholders

- Application programmer
- Types of services needed by application
- How much data is being sent?
- How fast must it get there?
- Guaranteed delivery?
- Security?
- Network designer
- Cost effective network with shared resources
- Network provider
- Network that is easy to manage

Requirement stakeholders

- End user
- How easy is it to use?
- How expensive is it to use?
- How fast is it to use?
- How consistent is it to use?
- ???

4 requirements for networks

1. Scalable connectivity

- Nodes (i.e. computers) in a network must be able to communicate
- Support arbitrarily large networks

Point-to-point

- Connect with point-to-point cables
- Simple but not scalable
- Given n computer, ($n-1$) links to each

Multiple-access

- Connect using multiple-access
- Only one cable per computer

- Problem: contention for medium

Multiple-access

- Shared medium
- No longer common for wired Ethernet
- Very common for wireless

Multiple-access

- Shared medium
- Also common for Internet over cable
- 500-2000 houses on a cable

Switched networks

- Circuit switched
- Initial setup of path through network
- Every packet between node X and Y, same route
- Example: public switch telephone network (PSTN)
- Also increasingly in optical networks

Switched networks

- Packet switched
- Packets between X and Y may take different routes
- Example: most computer networks, Internet
- Typically use store-and-forward

Switched networks

Switches: nodes that implement the network

internetwork / internet

Router/gateway:
forwards messages between independent networks

internet vs. Internet

internetwork / internet:
A set of independent networks interconnected, could be completely walled off from world.

Internet
Global public network consisting of interconnected networks running TCP/IP.

Message destination

?ANs

PANs Personal area networks
 A few meters
 LANs Local area networks
 < 1 km
 MANs Metropolitan area networks
 Spans a city or large campus
 WANs Wide area networks
 Worldwide
 SANs Storage area networks Specialized high-performance network for providing storage

2. Cost-effective resource sharing

- How do we share a link?
- Multiplexing - sharing a resources by combining
- De-multiplexing - splitting back apart

Type of multiplexing

- Synchronous time-division multiplexing (STDM)
- Divide time up and go round-robin
- Frequency division multiplexing (FDM)
- Problems with STDM, FDM:
- Node wastes link slot if idle
- Need to know number of nodes ahead of time

Type of multiplexing

- Statistical multiplexing

- Nodes split arbitrarily long messages into packets
- Link decides which packet to send next
- Different scheduling algorithms: FIFO, round-robin, quality of service (QoS) based

3. Support for common services

- Logical channels
- App-to-app communication path / pipe
- Allows app to ignore details of network

How nodes talk

- Client - makes a request
- Server - provides the data
- Communication patterns
- Request/reply

- Guaranteed 1-to-1 delivery
- Message stream
- May not need guaranteed delivery (e.g. videoconferencing)
- May want multicast

Reliability

- Network should hide errors
- Bit errors - 1 flips to 0,0 flips to 1
- Burst errors - several errors in a row
- Packets lost
- Unrecoverable bit error
- Congestion at a switch
- Packets delayed
- Links or nodes may fail

4. Manageability

- Someone has to manage the network
- Troubleshoot failures
- Find performance bottlenecks
- Configure large numbers of nodes
- May be a non-expert

Network architecture

- How to manage complexity?
- Use computer science secret sauce: abstraction
- Layers hide details
- Ignore details at layers above and below

Application programs

Process-to-process channels
Host-to-host connectivity
Hardware

Network architecture

- May be alternates at a given layer:

Application programs
Process-to-process channels
Host-to-host connectivity
Hardware

Application programs		
Request/reply channel	Message stream channel	
Host-to-host connectivity		
Hardware		

Protocols

- Protocol provides a communication service
- Service interface - layer above talking to you
- Peer-to-peer interface - talking to counterpart at same layer

Protocol graphs \& stacks

- Protocol graph:

- Protocol stack - given set of protocols
- RRP/HHP to send msg from Host 1 file app to Host 2 file app
- e.g. HTTP/TCP/IP

Encapsulation

- High-level messages encapsulated in low-level messages
- headers/footer get added by each layer

OSI 7-layer model

OSI 7-layer model

- Physical layer
- Transmission of raw bits
- Data link layer
- Aggregate bits into frames
- Network adapter + device driver
- Network layer
- Message called a packet
- Routes in a packet-switched network

These three layers are implemented on all network nodes!

OSI 7-layer model

- Transport layer
- Process-to-process channel
- Unit of data called a message
- Session layer
- Name space for tying different streams
- e.g. audio and video in a conferencing app
- Presentation layer
- Format of data between peers
- Big/little endian, bit width of integer

Application

Presentation

Session

Transport

Network

Data link

Physical

- Application layer
- Standardize common types of exchanges
- Protocols like HTTP, SMTP, IMAP

Internet architecture

- Popular 4-layer model
- All roads go through IP

Another view of the Internet architecture. Subnetwork is often called network or link layer.

Internet architecture

- No strict layering, application can bypass layers if need be

Application	
TCP	UDP
IP	
Subnetwork	
Subn	

- New protocols: approval requires specification and working code
- Internet Engineering Task Force (IETF)

"We reject kings, presidents and
voting. We believe in rough consensus and running code."
-David Clark

Layers compared

Summary

- Networks support wide-variety of apps
- Many stakeholders:
- Programmer, network designer/provider, end-user
- Scalable, cost-effective, reliable connectivity supporting common services
- Protocols, graphs \& stacks
- 7-layer OSI and 4-layer Internet architectures

