
Subroutines,
the stack, memory addressing

CSCI 255: Introduction to Embedded Systems • Keith Vertanen • Copyright © 2011

Overview

• Subroutines

– Passing parameters

– Estimating runtime of program

– How it effects the stack

• Stack

– Pushing and popping values

• Addressing modes

– Ways to specify values or memory locations

2

Subroutines

• Subroutines

– Code that executes a specific task

– Returns back to instruction after subroutine
finishes

– Examples:

• Subroutine that displays number in binary on LEDs

• Subroutine that pauses for X0 millisecond

– Stack pointer (SP) tracks return address

• SP defaults to 07h

• Best to set it to higher address to avoid register banks

3

Subroutines

• CALL address16

– Calls subroutine specified by address

• CALL → translated to ACALL (2 bytes) or LCALL (3 bytes)

• Push PC + 2/3 (2 for ACALL, 3 for LCALL) onto stack

• PC set to address of CALL operand

• Increments Stack Pointer (SP) by 2

• RET

– All subroutines must end with RET

• PC set to top two-bytes from stack

• Decrements Stack Pointer (SP) by 2

4

LED display subroutine

5

Start:

 MOV SP, #2Fh ; Move SP away from registers, etc

 MOV R0, #13

 CALL DisplayR0 ; Display binary for 13 on LEDs

Loop:

 NOP

 JMP LOOP

; Subroutine that displays the value R0 on the LEDs.

; Handles complementing bits so binary 1 = lighted LED.

DisplayR0:

 MOV A, R0 ; Copy R0 to the A since CPL only works on A

 CPL A ; Invert the value to make 1 = ON

 MOV P0, A ; Copy to the LEDs

 RET

END

Estimating run-time

• 8052 clock speed

– 11.0592 Mhz (11,059,200 clock ticks per second)

– 12 clock ticks per machine cycle

– How much time does this take?

6

; Triply nested loop to burn cycles

; Number of loops 1 * 12 * 255

 MOV R2, #1 ; for (i = 0; i < 1; i++)

Top: ; {

 MOV R1, #12 ; for (j = 0; j < 12; j++)

Mid: ; {

 MOV R0, #255 ; for (k = 0; k < 255; k++)

Loop: NOP ; {

 DJNZ R0, Loop ; }

 DJNZ R1, Mid ; }

 DJNZ R2, Top ; }

Estimating run-time

7

; Triply nested loop to burn cycles

; Number of loops 1 * 12 * 255

 MOV R2, #1 ; 1 cycle * 1 time

Top: ;

 MOV R1, #12 ; 1 cycle * 1 time

Mid: ;

 MOV R0, #255 ; 1 cycle * (1 * 12 times)

Loop: NOP ; 1 cycle * (1 * 12 * 255 times)

 DJNZ R0, Loop ; 2 cycles * (1 * 12 * 255 times)

 DJNZ R1, Mid ; 2 cycles * (1 * 12 times)

 DJNZ R2, Top ; 2 cycles * 1 time

 1

 1

 12

 3060

 6120

 24

+ 2

 9220 cycles * (1 second/11059200 ticks) * 12 ticks/cycle

= 0.01000434 seconds

Passing parameters

• Everything really a global variable

• Passing parameters to subroutine

– Agree where input parameters are put

• e.g. R0 in previous example

• Returning value from subroutine

– Agree on where output goes

• e.g. Leave calculation in accumulator

 8

Flexible delay subroutine

• Goal: subroutine burn N x 0.01s

• How to pass input N?

– Dedicate 1 byte of our 256 bytes for parameter

– Give it a friendly name with EQU

– Allows delay of 0.00s - 2.55s

• How many loops?

– Triply nested, outer loop use parameter

– Dedicate another two bytes for inner counters

9

Flexible delay subroutine

10

DELAY_AMOUNT EQU 30h

DELAY_TEMP0 EQU 31h

DELAY_TEMP1 EQU 32h

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Subroutine to burn cycles

; DELAY_AMOUNT - hundredths of a second to pause

Delay:

 MOV DELAY_TEMP1, #12

DelayMid:

 MOV DELAY_TEMP0, #255

DelayLoop:

 NOP

 DJNZ DELAY_TEMP0, DelayLoop

 DJNZ DELAY_TEMP1, DelayMid

 DJNZ DELAY_AMOUNT, Delay

 RET

Using the delay subroutine

11

; Example showing usage of the flexible delay subroutine.

; Main program toggles LEDs off/on every 60 seconds.

Start:

 MOV A, #00h

Loop:

 MOV P0, A

 MOV R0, #60

Minute:

 MOV DELAY_AMOUNT, #100

 CALL Delay

 DJNZ R0, Minute

 CPL A

 JMP Loop

...

Stack pointer

• Stack pointer (SP)

– SFR at memory location 81h

– Indicates next value to be taken from stack

– Initialized to 07h

– Manipulated by:

• ACALL, LCALL, RET

• PUSH, POP

• RETI

12

Uses for the stack

• Calling subroutines

– CALL → ACALL, LCALL

• Push two byte address of return location on RET

• Location is current Program Counter (PC) + size of CALL
instruction (2 bytes ACALL, 3 bytes LCALL)

– RET

• Pop two bytes, load into Program Counter (PC)

• Causes execution to resume after CALL

– Subroutines can call other subroutines

• Stack grows by 2 bytes with each CALL

13

Uses for the stack

• Saving and restoring data

– Useful in Interrupt Service Routines (ISR)

• e.g. arrival of data on serial port

– Normal program flow suspended to run ISR

– ISR must protect:

• Accumulator (ACC)

• Data Pointer SFRs (DPH/DPL)

• Program Status Word SFR (PSW)

• B Register (B)

• R Registers (R0-R7)

14

Pushing and popping

• PUSH direct

– Increments Stack Pointer (SP) by 1

– Then pushes value at direct onto stack

– 2 bytes, 2 cycles

• POP direct

– Pops last value from the stack, puts into direct

– Then decrements Stack Pointer (SP) by 1

– 2 bytes, 2 cycles

15

PUSH / POP Example

16

; Example interrupt service routine

InterruptHandler:

 ; Save state of PSW and ACC

 PUSH ACC

 PUSH PSW

 ...

 MOV A,#00 ; Use accumulator for something

 ...

 ; Restore PSW and ACC

 POP PSW

 POP ACC

 ; Return from ISR

 RETI

Addressing modes

• 8052 memory addressing modes

– Immediate MOV A, #20h

– Direct MOV A, 30h

– Indirect MOV A, @R0

– External direct MOVX A, @DPTR

– External indirect MOVX A, @R0

– Code indirect MOVC A, @A+DPTR

17

Addressing modes

• Immediate addressing

– e.g. MOV A, #20h

– Value to be stored follows opcode

– Specifying a literal value in decimal, octal, hex, or
binary

– Very fast, not very flexible

18

Addressing modes

• Direct addressing

– e.g. MOV A, 30h

– Value to be stored is obtained by retrieving from
specified memory address

– Lack of # symbol differentiates from immediate

– Fast, value stored in internal RAM

– 00h-7Fh refers to RAM (128 bytes)

– 80h-FFh refer to Special Function Registers (SFRs)

19

Addressing modes

• Indirect addressing

– e.g. MOV A, @R0

– Read the value of R0, obtain value at memory
pointed to by R0

– Only way to get to the upper 128 bytes on 8052

– Indirect never refers to a SFR

– Example:

MOV R0, #40h

MOV A, @R0

Register R0 holds value 40h, load accumulator with
whatever is stored at RAM address 40h

 20

Summary

• Subroutines

– Passing parameters

– Estimating runtime

• Stack

– Used when we call subroutines

– Can manually PUSH and POP values

• We'll use in Interrupt Service Routines (ISRs)

• Addressing modes

– Immediate, direct, indirect

21

