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ALU

* ALU (Arithmetic Logic Unit)
— Building block of the CPU

— Normally at least:

 Bitwise AND, NOT, OR, XOR

* Integer addition, subtraction

* Bit shifting
— Input from memory register(s)
— QOutput to memory register

— Which operation stored determined by signal
from control unit



Let's build an ALU

* ALU (Arithmetic Logic Unit)

— 4 different operations
* Add, subtract, bitwise AND, bitwise XOR

— Two 4-bit inputs
— One 4-bit output
— ALU performs all 4 operations in parallel

— 2 selection bits select result put on output wires



4-bit full adder

 Goal: x+vy=1zfor 4-bit integers
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4-bit adder
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4-bit subtractor

e Goal: x-y=1zfor 4-bit integers
— One approach: design like adder circuit
— Better approach: reuse the adder
— Two's complement, invert bits and add 1

4-bit 4-bit
input x Abit input x A-bit
output z output z
4-bit 4-bit
inputy inputy
0 1

Circuit doing addition Circuit doing subtraction
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ALU with 4-bit lines
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Our simple ALU

First input
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Second input/

4 bits on these lines

7l

Output of calculation

Business end of the
ALU, compute all
operations in parallel

2 bits on this line

LU Select

Which type of thing to output, 00 =
ADD, 01 =SUB, 10 =AND, 11 = XOR
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Let's build a register

* n-bit register
— Group of n flip-flops storing n bits
— Includes combinational gates
— Provides output of its n stored bits
— Can be told to memorize n bits on input lines

 Someone sets load line high
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Clocked D flip-flop

* D flip-flop
— Hook the enable line to a clock
— Clocked latch = flip-flop
— State change has to wait for next clock cycle
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4-bit register with parallel load
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4-bit register with parallel load
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Let's build a register bank

 We need to store multiple variables
e Use four 4-bit registers

— Someone sets target register number 0-3
— Put target register's stored value on output line

— If write bit enabled, make target register
memorize data on input line
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Four 4-bit register bank
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Four 4-bit register bank

Four 4-bit parallel load
registers

Value to write

Write new
value?

Output of bank

Select which register
will get enabled if
write is high

't output from
pf the registers

Which register to write
to or read from

reg address
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Let's build a computer (sort of)

e So far we've built:
— ALU

* Computes 4 operations on two 4-bit numbers

— Register bank
e Select one of four 4-bit numbers

e Let's hook them together!

— Problem: ALU needs two inputs and one output
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Multiport register bank

output 2

1
1 —-—\
- MUX output1
ﬂ B
1
1

REG 00 REG 00
’5;‘[9 a0
write |@] — write [ @] et
REG 01 REG 0
0 0
0 F D O =10 v h D
enn L)
DMX == = —1 mux P 000 output DMX ) Bl
N N | I ™~ REG 1
0 )| 0
® DQ
%‘[9 a0
.—l .—l
REG 11 REG 1
0 DOQ
D |
%xu:(? €00
— e
@& read1 address@
reg address wirite address @

Original design of register bank

read2 address m
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Multiport register bank

REG 00

input PO 0O

write @

D 00 0J output 1
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Which register to write
input 1 to (if write is high)
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Hello computer
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Hello computer

AND

read addressm
J?
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Multiport register bank

Simple ALIU
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Let’s build a counter

e 4-bit synchronous counter
— Count from 0000 up to 1111
— Roll back to O

— Increment on each clock cycle
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Let’s build a counter

0000

e 4-bit synchronous counter 0001
0010

— Count from 0000 up to 1111 0011

— Roll back to 0 0100
0101

— Increment on each clock cycle 0110

0111

* Working on an algorithm 1000

— Which bit always flips? 1001
. . pe . . 1010

* Least significant bit always flips o011

— When do other bits flip? 1100

1101
1110
1111

e Other bits flip when all bits to right are 1
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JK flip-flop

JK flip-flop

— Refinement of SR flip-flop

— SET: J=1, K=0

— RESET: J=0, K=1

— TOGGLE: J=1, K=1 (flips the stored bit)

) (K[ Cldock Q) Q)
0 0 high X X
0 1 high X 0
1 0 high X 1
1 1 high X X



T flip-flop

* Tflip-flop “toggle”
— Like JK but connect J and K together
— LEAVE: T=0
— TOGGLE: T=1 (flips the stored bit)

T [cldock |Qt) ] Qi) n
0 X

high X
1 high X X’
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4-bit synchronous counter
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4-bit synchronous counter

4 T flip-flops plus logic so they only
toggle if all less significant bits are 1
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Summary

Built a simple ALU

Used flip-flops to build a register
Created a register bank

Created a multiported register bank
Made a simple computer

Made a counter

30



