Arithmetic logic units and
memory

& 8541 cr

SNTUASBBEGE

CSCI 255: Introduction to Embedded Systems e Keith Vertanen e Copyright © 2011

Layers of abstraction

computer

components

sequential circuits

combinational circuit

logic gates
clock
connector

switch

components

multiplexer,
demultiplexer, adder,
flip-flop

logic gates, connectors,
clock

logic gates, connectors

switches, connectors
raw materials
raw materials

raw materials

Macbook Pro

registers, ALU, counter

flip-flop

multiplexer,
demultiplexer, adder

AND, OR, NOT
crystal oscillator
Wire

transistor, relay

ALU

* ALU (Arithmetic Logic Unit)
— Building block of the CPU

— Normally at least:

 Bitwise AND, NOT, OR, XOR

* Integer addition, subtraction

* Bit shifting
— Input from memory register(s)
— QOutput to memory register

— Which operation stored determined by signal
from control unit

Let's build an ALU

* ALU (Arithmetic Logic Unit)

— 4 different operations
* Add, subtract, bitwise AND, bitwise XOR

— Two 4-bit inputs
— One 4-bit output
— ALU performs all 4 operations in parallel

— 2 selection bits select result put on output wires

4-bit full adder

 Goal: x+vy=1zfor 4-bit integers

X3 X3 X

Y3 Yo Vi

4-bit adder

4-bit

Input x A-bit

output z
4-bit
input y

carry in

Co

X3 X3 X3 X

T Vs Y2 Y1 Yo
RN 7R 7 7R

4-bit subtractor

e Goal: x-y=1zfor 4-bit integers
— One approach: design like adder circuit
— Better approach: reuse the adder
— Two's complement, invert bits and add 1

4-bit 4-bit
input x Abit input x A-bit
output z output z
4-bit 4-bit
inputy inputy
0 1

Circuit doing addition Circuit doing subtraction

%3
%2
el

x0

y3
y2
Y1

y0

Bitwise AND, XOR

Z3

72

Z1

@ (2 (22 |22 2|2

4-bit
input x

4-bit
inputy

z0

TIT1

4-bit
output z

%3
X2
x1

x0

y3
y2
Y1

y0

®
) /
®
iy /
@‘
iy /
®
®

o5

zZ3

72

Z1

z0

4-bit
input x A-bit
output z
4-bit
inputy

ALU with 4-bit lines

C N
- _+I
100 1 CQut Lm
N — (L 1001
/

111 {4=gh }

Our simple ALU

First input
 C 1IN
-+
w100 1 | ¢ out
l C Hli.
l {>q . out
vt 11y

Second input/

4 bits on these lines

7l

Output of calculation

Business end of the
ALU, compute all
operations in parallel

2 bits on this line

LU Select

Which type of thing to output, 00 =
ADD, 01 =SUB, 10 =AND, 11 = XOR

11

Let's build a register

* n-bit register
— Group of n flip-flops storing n bits
— Includes combinational gates
— Provides output of its n stored bits
— Can be told to memorize n bits on input lines

 Someone sets load line high

12

Clocked D flip-flop

* D flip-flop
— Hook the enable line to a clock
— Clocked latch = flip-flop
— State change has to wait for next clock cycle

D [®] >

D Q
pC

U

D (data) | Cldock Q) Q)
0 0

high X
1 high X 1

13

4-bit register with parallel load

load

x0

X1

%2

%3

clock

®

2l

S N

0"
E‘_[_I I_;I

zO

O =)
‘l@L‘ l@L‘
o < e,

i

1T

z1
22
23

14

4-bit register with parallel load

Set to hlgh oad [@ I.
to memorize —1®
input bits —
x0 |@ /
L.
%-‘-—z
Dieng

1|®

Input bits f
\ I-—F @Q“l @z:
Dieng
x2 | @ / \

|
[o @Q‘-l @Zf
Dien0
x3 |® \t / |
Logic to keep value the Output bits

same except if load is high|
15

Flip-flops

clock [

Let's build a register bank

 We need to store multiple variables
e Use four 4-bit registers

— Someone sets target register number 0-3
— Put target register's stored value on output line

— If write bit enabled, make target register
memorize data on input line

16

Four 4-bit register bank

input P10 1

write @

reg address

REG 00

0
‘_'D Q=

enl

D101

i

output

17

Four 4-bit register bank

Four 4-bit parallel load
registers

Value to write

Write new
value?

Output of bank

Select which register
will get enabled if
write is high

't output from
pf the registers

Which register to write
to or read from

reg address

18

Let's build a computer (sort of)

e So far we've built:
— ALU

* Computes 4 operations on two 4-bit numbers

— Register bank
e Select one of four 4-bit numbers

e Let's hook them together!

— Problem: ALU needs two inputs and one output

19

Multiport register bank

output 2

1
1 —-—\
- MUX output1
ﬂ B
1
1

REG 00 REG 00
’5;‘[9 a0
write |@] — write [@] et
REG 01 REG 0
0 0
0 F D O =10 v h D
enn L)
DMX == = —1 mux P 000 output DMX) Bl
N N | I ™~ REG 1
0)| 0
® DQ
%‘[9 a0
.—l .—l
REG 11 REG 1
0 DOQ
D |
%xu:(? €00
— e
@& read1 address@
reg address wirite address @

Original design of register bank

read2 address m

New design, can write to one address while

reading from two different addresses

20

Multiport register bank

REG 00

input PO 0O

write @

D 00 0J output 1

mMUX 1= 0 0 0) output 2
|~

N\ Which register to send
%‘“ addressﬂ/) to output 1
Lrl-
@2 addressFiJ

Which register to send
to output 2

write address

Which register to write
input 1 to (if write is high)

21

Hello computer

C 1N
e N 1
MUX t — \
| T - MILX
| L~
& DOQ &» C \rlL
ey *ﬂo C 1:]—1:_
0
REG 11 \I |
0 J MU AND
0 3 - B!
J e .
read1 addressm).
write address Eal Y

read2 address .—1 0
. ALU Select P 1

22

Hello computer

AND

read addressm
J?

@ddress EI read? address

Multiport register bank

Simple ALIU

23

Let’s build a counter

e 4-bit synchronous counter
— Count from 0000 up to 1111
— Roll back to O

— Increment on each clock cycle

 Wor
- W
— W

King on an algorithm
nich bit always flips?

nen do other bits flip?

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Let’s build a counter

0000

e 4-bit synchronous counter 0001
0010

— Count from 0000 up to 1111 0011

— Roll back to 0 0100
0101

— Increment on each clock cycle 0110

0111

* Working on an algorithm 1000

— Which bit always flips? 1001
. . pe . . 1010

* Least significant bit always flips o011

— When do other bits flip? 1100

1101
1110
1111

e Other bits flip when all bits to right are 1

25

JK flip-flop

JK flip-flop

— Refinement of SR flip-flop

— SET: J=1, K=0

— RESET: J=0, K=1

— TOGGLE: J=1, K=1 (flips the stored bit)

) (K[Cldock Q) Q)
0 0 high X X
0 1 high X 0
1 0 high X 1
1 1 high X X

T flip-flop

* Tflip-flop “toggle”
— Like JK but connect J and K together
— LEAVE: T=0
— TOGGLE: T=1 (flips the stored bit)

T [cldock |Qt)] Qi) n
0 X

high X
1 high X X’

27

4-bit synchronous counter

28

4-bit synchronous counter

4 T flip-flops plus logic so they only
toggle if all less significant bits are 1

Q~ —
/

|
(i ; ©
z2 z1 Z

4-bit output of counter

29

Summary

Built a simple ALU

Used flip-flops to build a register
Created a register bank

Created a multiported register bank
Made a simple computer

Made a counter

30

