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Overview 
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• Digital circuits 

– How a switch works 

– Building basic gates from switches 

• Boolean algebra 

– Sum-of-products notation 

– Rules of Boolean algebra 

– Minimization 

 



Digital circuits 

• Building blocks: 

– Wires 

• Propagate an ON/OFF value 

• 1 = connected to power 

• 0 = not connect to power 

• Any wire connected to a 
wire that is on is also on 

– Switches 

• Controls propagation of an 
ON/OFF value through a 
wire 
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Controlled switch 

• Building a switch 

– 3 connections: input, output, control 

– control = OFF, input connected to output 
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input output 

control 



Switch types 
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Relay Vacuum tube 

Transistor Pass transistor 



Logic gates  

• Build NOT, OR, AND gates from switches 
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x NOT 

0 1 

1 0 

x y OR 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

NOT = x' 

OR = x + y 



Logic gates  
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x y AND 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND = xy 



Inverted gate variants 
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x y NOR 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

NOR(x,y) 

x y NAND 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

NAND(x,y) 

x y XNOR 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

XNOR(x,y) 



Boolean algebra 

• Boolean algebra 

– Every variable is either 0 or 1 

– Functions whose inputs and outputs are 0 or 1 

• Relationship to circuits: 

– Boolean variable = signal (ON/OFF) 

– Boolean function = circuit made of gates & wires 

• Relationship to truth tables: 

– Systematic way to represent any Boolean function 

– One row for any input combination 
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2 variable truth tables 

• Given 2 variables, how many possible Boolean 
functions? 
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x y function 1 function 2 … function 
N 

0 0 

0 1 

1 0 

1 1 



All 2 variable Boolean functions 
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x y ZERO AND x y  XOR OR 

0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 1 1 1 

1 0 0 0 1 1 0 0 1 1 

1 1 0 1 0 1 0 1 0 1 

x y NOR EQ y' x' NAND ONE 

0 0 1 1 1 1 1 1 1 1 

0 1 0 0 0 0 1 1 1 1 

1 0 0 0 1 1 0 0 1 1 

1 1 0 1 0 1 0 1 0 1 



3 variables truth tables 

• Given 3 variables, how many total possible 
Boolean functions? 
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x y z function 
1 

function 
2 

… function 
N 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 



Representing Boolean functions 

• 16 = 24 Boolean functions of 2 variables 

• 256 = 28 Boolean functions of 3 variables 

• 65536 = 216 Boolean functions of 4 variables 

• 22n Boolean functions of n variables! 

– We need a more compact representation 
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Sum-of-products 

• Universality: any Boolean function can be 
expressed using {AND, OR, NOT} 

– Also universal:  

                           {AND, NOT}, {OR, NOT},  

                           {NAND}, {NOR} 

• Sum-of-products 

– Create Boolean expression from truth table 

– Form AND term for each 1 in table 

– OR terms together 
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Sum-of-products: XOR 
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x y XOR 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

XOR = x ⊕ y 

XOR(x,y) = x'y + xy' 

– Form AND term for each 1 in table 

– OR terms together 

– Easy to convert to circuit using only AND, OR, NOT 

 



Sum-of-products: XOR 
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x y XOR 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

XOR = x ⊕ y 

XOR(x,y) = x'y + xy' 



Majority function 

• Majority function 

– 1 if majority of bits are 1, 0 otherwise 
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x y z MAJ(x,y,z) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 



Majority function 
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x y z MAJ(x,y,z) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

MAJ(x,y,z) = x'yz + xy'z + xyz' + xyz 

Can we do better? 



Minimizing MAJ(x,y,z) 
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MAJ(x,y,z) = x'yz + xy'z + xyz' + xyz      =     xy + yz + xz  

4, 3-input AND gates 
3, NOT gates 
1, 4-input OR gate 

3, 2-input AND gates 
1, 3-input OR gate 



Products-of-sums 

• Products-of-sums 

– Create Boolean expression from truth table 

– Form OR term for each 0 in table 

• Use X in OR term if X = 0, X’ is X = 1 

– AND terms together 
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Product of sums: Majority 
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x y z MAJ(x,y,z) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

MAJ(x,y,z) = (x + y + z) (x + y + z’) (x + y’ + z) (x’ + y + z) 



Comparing POS vs. SOP 

• Products-of-sums (POS) 

– Create Boolean expression from truth table 

– Form OR term for each 0 in table 

• Use X in OR term if X = 0, X’ is X = 1 

– AND terms together 

• Sum-of-products (SOP) 

– Create Boolean expression from truth table 

– Form AND term for each 1 in table 

– Use X in AND term if X = 1, use X’ if X = 0 

– OR terms together 
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Rules of Boolean algebra 
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(a) (b) 

1. Commutative law x + y = y + x xy = yx 

2. Associate law (x + y) + z = x + (y + z) (xy)z=x(yz) 

3. Distributive law x(y + z) = xy + xz (x + y)(x + z) = x + yz  

4. Identity law x + x = x xx = x 

5. xy + xy' = x (x + y)(x + y') = x 

6. Redundance law x + xy = x x(x + y) = x 

7. 0 + x = x 0x = 0 

8. 1 + x = 1 1x = x 

9. x' + x = 1 x'x = 0 

10. x + x'y = x + y x(x' + y) = xy 

11. De Morgan's Theorem (x + y)' = x'y' (xy)' = x' + y' 



Minimizing MAJ(x, y, z) 
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MAJ(x, y, z)  = x'yz + xy'z + xyz' + xyz 
  = x'yz + xy'z + xy(z' + z) [3a] distributive 
  = x'yz + xy'z + xy  [9a] 
  = x'yz + xy'z + xy(1 + z)  [8a] 
   = x'yz + xy'z + xy + xyz  [3a] distributive 
  = yz(x' + x) + xy'z + xy  [3a] distributive 
  = yz + xy'z + xy   [9a] 
  = yz + xy'z + xy(1 + z)  [8a] 
  = yz + xy'z + xy + xyz  [3a] distributive 
  = yz + xz(y' + y) + xy  [3a] distributive 
  = yz + xz + xy   [9a] 



Problem 1: Odd parity function 

• Odd parity 

– 1 if odd number of bits are 1 

– Find sum-of-products 

– Draw the circuit 
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x y z ODD(x,y,z) 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 



Problem 2: Absolute value 

• 3-bit number in two’s complement 

– Bits = xyz 

• Create a truth table for ABS(x,y,z) >= 2 

– ABS() is 1 if and only if absolute value is 2 or more 

• Find sum-of-products 

• Minimize the Boolean expression 

• Draw the circuit 
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Problem 3: 

• Show that {NAND} is universal 

– Hint: show you can build AND, OR, NOT from 1-3 
NAND gates 

• Show that {NOR} is universal 

• Show that {AND, NOT} is universal 

– Hint: Use De Morgan’s on sum-of-products to 
eliminate OR 

• Show that {OR, NOT} is universal 

– Hint: Use De Morgan’s on products-of-sums to 
eliminate AND 
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Summary 

• Wires + switches → gates {AND, OR, NOT} 

• Truth table → sum-of-products Boolean 
expression 

• Sum-of-products → circuit 

• Simplification via rules of Boolean algebra 
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