
Circuits & Boolean algebra

CSCI 255: Introduction to Embedded Systems • Keith Vertanen • Copyright © 2011

http://xkcd.com/730/

http://xkcd.com/730/

Overview

2

• Digital circuits

– How a switch works

– Building basic gates from switches

• Boolean algebra

– Sum-of-products notation

– Rules of Boolean algebra

– Minimization

Digital circuits

• Building blocks:

– Wires

• Propagate an ON/OFF value

• 1 = connected to power

• 0 = not connect to power

• Any wire connected to a
wire that is on is also on

– Switches

• Controls propagation of an
ON/OFF value through a
wire

3

Controlled switch

• Building a switch

– 3 connections: input, output, control

– control = OFF, input connected to output

4

input output

control

Switch types

5

Relay Vacuum tube

Transistor Pass transistor

Logic gates

• Build NOT, OR, AND gates from switches

6

x NOT

0 1

1 0

x y OR

0 0 0

0 1 1

1 0 1

1 1 1

NOT = x'

OR = x + y

Logic gates

7

x y AND

0 0 0

0 1 0

1 0 0

1 1 1

AND = xy

Inverted gate variants

8

x y NOR

0 0 1

0 1 0

1 0 0

1 1 0

NOR(x,y)

x y NAND

0 0 1

0 1 1

1 0 1

1 1 0

NAND(x,y)

x y XNOR

0 0 1

0 1 0

1 0 0

1 1 1

XNOR(x,y)

Boolean algebra

• Boolean algebra

– Every variable is either 0 or 1

– Functions whose inputs and outputs are 0 or 1

• Relationship to circuits:

– Boolean variable = signal (ON/OFF)

– Boolean function = circuit made of gates & wires

• Relationship to truth tables:

– Systematic way to represent any Boolean function

– One row for any input combination

9

2 variable truth tables

• Given 2 variables, how many possible Boolean
functions?

10

x y function 1 function 2 … function
N

0 0

0 1

1 0

1 1

All 2 variable Boolean functions

11

x y ZERO AND x y XOR OR

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

x y NOR EQ y' x' NAND ONE

0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

3 variables truth tables

• Given 3 variables, how many total possible
Boolean functions?

12

x y z function
1

function
2

… function
N

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Representing Boolean functions

• 16 = 24 Boolean functions of 2 variables

• 256 = 28 Boolean functions of 3 variables

• 65536 = 216 Boolean functions of 4 variables

• 22n Boolean functions of n variables!

– We need a more compact representation

13

Sum-of-products

• Universality: any Boolean function can be
expressed using {AND, OR, NOT}

– Also universal:

 {AND, NOT}, {OR, NOT},

 {NAND}, {NOR}

• Sum-of-products

– Create Boolean expression from truth table

– Form AND term for each 1 in table

– OR terms together

14

Sum-of-products: XOR

15

x y XOR

0 0 0

0 1 1

1 0 1

1 1 0

XOR = x ⊕ y

XOR(x,y) = x'y + xy'

– Form AND term for each 1 in table

– OR terms together

– Easy to convert to circuit using only AND, OR, NOT

Sum-of-products: XOR

16

x y XOR

0 0 0

0 1 1

1 0 1

1 1 0

XOR = x ⊕ y

XOR(x,y) = x'y + xy'

Majority function

• Majority function

– 1 if majority of bits are 1, 0 otherwise

17

x y z MAJ(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Majority function

18

x y z MAJ(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ(x,y,z) = x'yz + xy'z + xyz' + xyz

Can we do better?

Minimizing MAJ(x,y,z)

19

MAJ(x,y,z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz

4, 3-input AND gates
3, NOT gates
1, 4-input OR gate

3, 2-input AND gates
1, 3-input OR gate

Products-of-sums

• Products-of-sums

– Create Boolean expression from truth table

– Form OR term for each 0 in table

• Use X in OR term if X = 0, X’ is X = 1

– AND terms together

20

Product of sums: Majority

21

x y z MAJ(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ(x,y,z) = (x + y + z) (x + y + z’) (x + y’ + z) (x’ + y + z)

Comparing POS vs. SOP

• Products-of-sums (POS)

– Create Boolean expression from truth table

– Form OR term for each 0 in table

• Use X in OR term if X = 0, X’ is X = 1

– AND terms together

• Sum-of-products (SOP)

– Create Boolean expression from truth table

– Form AND term for each 1 in table

– Use X in AND term if X = 1, use X’ if X = 0

– OR terms together

22

Rules of Boolean algebra

23

(a) (b)

1. Commutative law x + y = y + x xy = yx

2. Associate law (x + y) + z = x + (y + z) (xy)z=x(yz)

3. Distributive law x(y + z) = xy + xz (x + y)(x + z) = x + yz

4. Identity law x + x = x xx = x

5. xy + xy' = x (x + y)(x + y') = x

6. Redundance law x + xy = x x(x + y) = x

7. 0 + x = x 0x = 0

8. 1 + x = 1 1x = x

9. x' + x = 1 x'x = 0

10. x + x'y = x + y x(x' + y) = xy

11. De Morgan's Theorem (x + y)' = x'y' (xy)' = x' + y'

Minimizing MAJ(x, y, z)

24

MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz
 = x'yz + xy'z + xy(z' + z) [3a] distributive
 = x'yz + xy'z + xy [9a]
 = x'yz + xy'z + xy(1 + z) [8a]
 = x'yz + xy'z + xy + xyz [3a] distributive
 = yz(x' + x) + xy'z + xy [3a] distributive
 = yz + xy'z + xy [9a]
 = yz + xy'z + xy(1 + z) [8a]
 = yz + xy'z + xy + xyz [3a] distributive
 = yz + xz(y' + y) + xy [3a] distributive
 = yz + xz + xy [9a]

Problem 1: Odd parity function

• Odd parity

– 1 if odd number of bits are 1

– Find sum-of-products

– Draw the circuit

25

x y z ODD(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Problem 2: Absolute value

• 3-bit number in two’s complement

– Bits = xyz

• Create a truth table for ABS(x,y,z) >= 2

– ABS() is 1 if and only if absolute value is 2 or more

• Find sum-of-products

• Minimize the Boolean expression

• Draw the circuit

26

Problem 3:

• Show that {NAND} is universal

– Hint: show you can build AND, OR, NOT from 1-3
NAND gates

• Show that {NOR} is universal

• Show that {AND, NOT} is universal

– Hint: Use De Morgan’s on sum-of-products to
eliminate OR

• Show that {OR, NOT} is universal

– Hint: Use De Morgan’s on products-of-sums to
eliminate AND

27

Summary

• Wires + switches → gates {AND, OR, NOT}

• Truth table → sum-of-products Boolean
expression

• Sum-of-products → circuit

• Simplification via rules of Boolean algebra

28

