Circuits \& Boolean algebra

Overview

- Digital circuits
- How a switch works
- Building basic gates from switches
- Boolean algebra
- Sum-of-products notation
- Rules of Boolean algebra
- Minimization

Digital circuits

- Building blocks:
- Wires
- Propagate an ON/OFF value
- 1 = connected to power
- 0 = not connect to power
- Any wire connected to a wire that is on is also on
- Switches
- Controls propagation of an ON/OFF value through a wire

Controlled switch

- Building a switch
- 3 connections: input, output, control
- control = OFF, input connected to output

Anatomy of a relay (controlled switch)

Switch types

Transistor

Vacuum tube

Pass transistor

Logic gates

- Build NOT, OR, AND gates from switches

Logic gates

AND $=x y$

x	y	AND
0	0	0
0	1	0
1	0	0
1	1	1

Inverted gate variants

NOR(x,y)	x	y	NOR
	0	0	1
	0	1	0
	1	0	0
	1	1	0
NAND(x,y)	x	y	NAND
	0	0	1
0	1	1	
	1	0	1
1	1	0	
XNOR(x,y)	x	y	XNOR
	0	0	1
0	1	0	
1	0	0	
1	1	1	

Boolean algebra

- Boolean algebra
- Every variable is either 0 or 1
- Functions whose inputs and outputs are 0 or 1
- Relationship to circuits:
- Boolean variable $=$ signal (ON/OFF)
- Boolean function = circuit made of gates \& wires
- Relationship to truth tables:
- Systematic way to represent any Boolean function
- One row for any input combination

2 variable truth tables

- Given 2 variables, how many possible Boolean functions?

x	y	function 1	function 2	\ldots	function N
0	0				
0	1				
1	0				
1	1				

All 2 variable Boolean functions

x	y	ZERO	AND		x		y	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

x	y	NOR	EQ	y^{\prime}		x^{\prime}		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

3 variables truth tables

- Given 3 variables, how many total possible Boolean functions?
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline x & y & z & \text { function } \\ \hline 1\end{array} \begin{array}{l}\text { function } \\ 2\end{array}\right)$

Representing Boolean functions

- $16=2^{4}$ Boolean functions of 2 variables
- $256=2^{8}$ Boolean functions of 3 variables
- $65536=2^{16}$ Boolean functions of 4 variables
- $2^{2^{n}}$ Boolean functions of n variables!
- We need a more compact representation

Sum-of-products

- Universality: any Boolean function can be expressed using \{AND, OR, NOT\}
- Also universal:

> \{AND, NOT\}, \{OR, NOT\}, \{NAND\}, \{NOR\}

- Sum-of-products
- Create Boolean expression from truth table
- Form AND term for each 1 in table
- OR terms together

Sum-of-products: XOR

$X O R=x \oplus y$

- Form AND term for each 1 in table
- OR terms together
- Easy to convert to circuit using only AND, OR, NOT

Sum-of-products: XOR

$X O R=x \oplus y$

x	y	XOR
0	0	0
0	1	1
1	0	1
1	1	0

$$
X O R(x, y)=x^{\prime} y+x y^{\prime}
$$

Majority function

- Majority function
- 1 if majority of bits are 1,0 otherwise

x	y	z	MAJ (x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Majority function

x	y	z	MAJ (x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y^{\prime} z+x y z{ }^{\prime}+x y z$

Can we do better?

Minimizing $\operatorname{MAJ}(x, y, z)$

$\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z=x y+y z+x z$

4, 3-input AND gates
3, NOT gates
1, 4-input OR gate

3, 2-input AND gates
1, 3 -input OR gate

Products-of-sums

- Products-of-sums
- Create Boolean expression from truth table
- Form OR term for each 0 in table
- Use X in OR term if $X=0, X^{\prime}$ is $X=1$
- AND terms together

Product of sums: Majority

x	y	z	MAJ (x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$\operatorname{MAJ}(x, y, z)=(x+y+z)\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right)$

Comparing POS vs. SOP

- Products-of-sums (POS)
- Create Boolean expression from truth table
- Form OR term for each 0 in table
- Use X in OR term if $X=0, X^{\prime}$ is $X=1$
- AND terms together
- Sum-of-products (SOP)
- Create Boolean expression from truth table
- Form AND term for each 1 in table
- Use X in AND term if $X=1$, use X^{\prime} if $X=0$
- OR terms together

Rules of Boolean algebra

	(a)	(b)
1. Commutative law	$x+y=y+x$	$x y=y x$
2. Associate law	$(x+y)+z=x+(y+z)$	$(x y) z=x(y z)$
3. Distributive law	$x(y+z)=x y+x z$	$(x+y)(x+z)=x+y z$
4. Identity law	$x+x=x$	$x x=x$
5.	$x y+x y^{\prime}=x$	$(x+y)\left(x+y^{\prime}\right)=x$
6. Redundance law	$x+x y=x$	$x(x+y)=x$
7.	$0+x=x$	$0 x=0$
8.	$1+x=1$	$1 x=x$
9.	$x^{\prime}+x=1$	$x^{\prime} x=0$
10.	$x+x^{\prime} y=x+y$	$x\left(x^{\prime}+y\right)=x y$
11. De Morgan's Theorem	$(x+y)^{\prime}=x^{\prime} y^{\prime}$	$(x y)^{\prime}=x^{\prime}+y^{\prime}$

Minimizing $\operatorname{MAJ}(x, y, z)$

$$
\begin{align*}
\operatorname{MAJ}(x, y, z) & =x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z \\
& =x^{\prime} y z+x y^{\prime} z+x y\left(z^{\prime}+z\right) \\
& =x^{\prime} y z+x y^{\prime} z+x y \\
& =x^{\prime} y z+x y^{\prime} z+x y(1+z) \\
& =x^{\prime} y z+x y^{\prime} z+x y+x y z \\
& =y z\left(x^{\prime}+x\right)+x y^{\prime} z+x y \\
& =y z+x y^{\prime} z+x y \tag{9a}\\
& =y z+x y^{\prime} z+x y(1+z) \\
& =y z+x y^{\prime} z+x y+x y z \\
& =y z+x z\left(y^{\prime}+y\right)+x y \\
& =y z+x z+x y
\end{align*}
$$

[3a] distributive [9a]
[3a] distributive [3a] distributive
[8a]
[3a] distributive [3a] distributive [9a]

Problem 1: Odd parity function

- Odd parity
-1 if odd number of bits are 1
- Find sum-of-products
- Draw the circuit

x	y	z	ODD (x, y, z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Problem 2: Absolute value

- 3-bit number in two's complement
- Bits = xyz
- Create a truth table for $\operatorname{ABS}(x, y, z)>=2$
$-A B S()$ is 1 if and only if absolute value is 2 or more
- Find sum-of-products
- Minimize the Boolean expression
- Draw the circuit

Problem 3:

- Show that \{NAND\} is universal
- Hint: show you can build AND, OR, NOT from 1-3 NAND gates
- Show that $\{N O R\}$ is universal
- Show that \{AND, NOT\} is universal
- Hint: Use De Morgan's on sum-of-products to eliminate OR
- Show that \{OR, NOT\} is universal
- Hint: Use De Morgan's on products-of-sums to eliminate AND

Summary

- Wires + switches \rightarrow gates \{AND, OR, NOT $\}$
- Truth table \rightarrow sum-of-products Boolean expression
- Sum-of-products \rightarrow circuit
- Simplification via rules of Boolean algebra

