Circuits & Boolean algebra

CSCI 255: Introduction to Embedded Systems • Keith Vertanen • Copyright © 2011

Overview

- Digital circuits
 - How a switch works
 - Building basic gates from switches
- Boolean algebra
 - Sum-of-products notation
 - Rules of Boolean algebra
 - Minimization

Digital circuits

- Building blocks:
 - Wires
 - Propagate an ON/OFF value
 - 1 = connected to power
 - 0 = not connect to power
 - Any wire connected to a wire that is on is also on

– Switches

 Controls propagation of an ON/OFF value through a wire

Controlled switch

- Building a switch
 - 3 connections: input, output, control
 - control = OFF, input connected to output

Switch types

Relay

Vacuum tube

Transistor

Pass transistor

Logic gates

• Build NOT, OR, AND gates from switches

x	У	OR
0	0	0
0	1	1
1	0	1
1	1	1

Logic gates

Inverted gate variants

X	у	NOR
0	0	1
0	1	0
1	0	0
1	1	0

NAND(x,y)

X	у	NAND
0	0	1
0	1	1
1	0	1
1	1	0

XNOR(x,y)

x	У	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Boolean algebra

- Boolean algebra
 - Every variable is either 0 or 1
 - Functions whose inputs and outputs are 0 or 1
- Relationship to circuits:
 - Boolean variable = signal (ON/OFF)
 - Boolean function = circuit made of gates & wires
- Relationship to truth tables:
 - Systematic way to represent any Boolean function
 - One row for any input combination

2 variable truth tables

• Given 2 variables, how many possible Boolean functions?

x	У	function 1	function 2	 function N
0	0			
0	1			
1	0			
1	1			

All 2 variable Boolean functions

X	У	ZERO	AND		X		у	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Х	у	NOR	EQ	у'		х'		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

3 variables truth tables

• Given 3 variables, how many total possible Boolean functions?

x	У	Z	function 1	function 2	 function N
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Representing Boolean functions

- 16 = 2⁴ Boolean functions of 2 variables
- 256 = 2⁸ Boolean functions of 3 variables
- 65536 = 2^{16} Boolean functions of 4 variables
- 2^{2ⁿ} Boolean functions of n variables!

– We need a more compact representation

Sum-of-products

- Universality: any Boolean function can be expressed using {AND, OR, NOT}
 - Also universal:

{AND, NOT}, {OR, NOT}, {NAND}, {NOR}

- Sum-of-products
 - Create Boolean expression from truth table
 - Form AND term for each 1 in table
 - OR terms together

Sum-of-products: XOR

XOR = $x \oplus y$

- Form AND term for each 1 in table
- OR terms together
- Easy to convert to circuit using only AND, OR, NOT

Sum-of-products: XOR

XOR = $x \oplus y$

x	У	XOR
0	0	0
0	1	1
1	0	1
1	1	0

XOR(x,y) = x'y + xy'

Majority function

- Majority function
 - 1 if majority of bits are 1, 0 otherwise

x	У	z	MAJ(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Majority function

x	У	z	MAJ(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

MAJ(x,y,z) = x'yz + xy'z + xyz' + xyz

Can we do better?

Minimizing MAJ(x,y,z)

MAJ(x,y,z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz

4, 3-input AND gates3, NOT gates1, 4-input OR gate

3, 2-input AND gates 1, 3-input OR gate

Products-of-sums

- Products-of-sums
 - Create Boolean expression from truth table
 - Form OR term for each 0 in table
 - Use X in OR term if X = 0, X' is X = 1
 - AND terms together

Product of sums: Majority

x	У	Z	MAJ(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

MAJ(x,y,z) = (x + y + z) (x + y + z') (x + y' + z) (x' + y + z)

Comparing POS vs. SOP

- Products-of-sums (POS)
 - Create Boolean expression from truth table
 - Form OR term for each 0 in table
 - Use X in OR term if X = 0, X' is X = 1
 - AND terms together
- Sum-of-products (SOP)
 - Create Boolean expression from truth table
 - Form AND term for each 1 in table

- Use X in AND term if X = 1, use X' if X = 0

– OR terms together

Rules of Boolean algebra

	(a)	(b)
1. Commutative law	x + y = y + x	xy = yx
2. Associate law	(x + y) + z = x + (y + z)	(xy)z=x(yz)
3. Distributive law	x(y + z) = xy + xz	(x + y)(x + z) = x + yz
4. Identity law	$\mathbf{x} + \mathbf{x} = \mathbf{x}$	xx = x
5.	xy + xy' = x	(x + y)(x + y') = x
6. Redundance law	x + xy = x	$\mathbf{x}(\mathbf{x} + \mathbf{y}) = \mathbf{x}$
7.	0 + x = x	0x = 0
8.	1 + x = 1	1x = x
9.	x' + x = 1	x'x = 0
10.	x + x'y = x + y	x(x' + y) = xy
11. De Morgan's Theorem	(x + y)' = x'y'	(xy)' = x' + y'

Minimizing MAJ(x, y, z)

MAJ(x, y, z)

= x'yz + xy'z + xyz' + xyz= x'yz + xy'z + xy(z' + z)= x'yz + xy'z + xy= x'yz + xy'z + xy(1 + z)= x'yz + xy'z + xy + xyz= yz(x' + x) + xy'z + xy = yz + xy'z + xy = vz + xv'z + xv(1 + z)= yz + xy'z + xy + xyz = yz + xz(y' + y) + xy= yz + xz + xy

[3a] distributive [9a] [8a] [3a] distributive [3a] distributive [9a] [8a] [3a] distributive [3a] distributive [9a]

Problem 1: Odd parity function

• Odd parity

- 1 if odd number of bits are 1
- Find sum-of-products
- Draw the circuit

x	У	z	ODD(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Problem 2: Absolute value

• 3-bit number in two's complement

- Bits = xyz

- Create a truth table for ABS(x,y,z) >= 2
 - ABS() is 1 if and only if absolute value is 2 or more
- Find sum-of-products
- Minimize the Boolean expression
- Draw the circuit

Problem 3:

- Show that {NAND} is universal
 - Hint: show you can build AND, OR, NOT from 1-3
 NAND gates
- Show that {NOR} is universal
- Show that {AND, NOT} is universal
 - Hint: Use De Morgan's on sum-of-products to eliminate OR
- Show that {OR, NOT} is universal
 - Hint: Use De Morgan's on products-of-sums to eliminate AND

Summary

- Wires + switches → gates {AND, OR, NOT}
- Truth table → sum-of-products Boolean expression
- Sum-of-products \rightarrow circuit
- Simplification via rules of Boolean algebra

