
Serial communication

CSCI 255: Introduction to Embedded Systems • Keith Vertanen • Copyright © 2011

Overview

• Serial communication

– Terminology

– RS-232 protocol

– Baud rates

– Flow control

• Example

– Develop functions to send / receive text
• Counter (8052 pushing data stream)

• Query/response (accept input, calculate output)

– Talk to a VT 220 terminal using 2 wires + ground

2

Serial communication

• Simple way to talk over 3 wires

– Transmit wire

– Receive wire

– Ground

• Why?

– Program/upgrade an embedded device

– Send data from sensor to a PC

– Debug embedded device with no input/output device
• Hook to a PC, device sends debug output to serial terminal

3

Parallel vs. Serial

• Parallel communication

– Send several signal at the same time

– One wire for each bit

• Serial communication

– Send data one bit at a time

– Smaller cables

– Cheaper

– Less opportunity for crosstalk

– No need to synch parallel bits

4

Terminology

• Full duplex

– Can send and receive at the same time

– Most microcontrollers with wired connections

• Half duplex

– Cannot send and receive simultaneous

– Wireless serial connections

• UART - Universal Asynchronous Receiver/Transmitter

– Handles converting parallel information (a byte) into a
sequences of serial information (bits)

5

RS-232

• RS-232 protocol

– Byte-oriented protocol
• Send a start bit, 0

• Send the byte, one bit at a time

• Optional parity bit

• Send a stop bit, 1

– No data, line at 1

– 1-0 signals start of
transmission

6

Physical connectivity

• DB25

– 25-pin serial connector

• DB9

– 9-pin serial connector

7

Parity bit

• Parity bit

– Simple form of error detection

– Detects single bit errors

– Add an extra bit to the 8-bits of data
• Odd parity, count of 1's is odd

• Even parity, count of 1's is even

8

Parity Data Data + parity

None 0100 0010 0100 0010

Odd 0100 0010 0100 0010 1

Even 0100 0010 0100 0010 0

Data transmission

• RS-232 is asynchronous

– Bytes sent erratically in time
• Whenever an event (e.g. key press) occurs

– No clock signal sent with the data
• This would require an additional wire

– Both sides have an internal clock
• Running at same rate

– Clocks synched on transmission/reception of start bit
• Sender clocks out byte one bit at a time

• Receiver clocks in byte one bit at a time

9

Baud rate

• How fast can we talk?

– Sender and receiver agree on a clock rate

– Baud rate
• Bits per second

• RS-232 One of a restricted set

– 75, 110, 300, 1200, 2400, 4800,9600, 14400, 19200, 28800, 33600,
56000, 115000

10

Flow control

• Flow control

– Preventing one side from overwhelming the other
• e.g. Limited buffer space, slow printer

– Hardware based, add extra wires
• RTS (Request to Send)

• CST (Clear to Send)

– Software based
• In-band signaling on the transmit line

• XOFF (transmit off) - ctrl+s, ASCII 19

• XON (transmit on) - ctrl+q, ASCII 17

11

8052 UART

• 8052 serial communication

– 3 wire connector

– 4 different modes
• 1 synchronous

– half-duplex

• 3 asynchronous

– full-duplex

– Baud rate controlled by:
• Timer1/2 overflow

• Fixed to oscillator frequency

12

Serial control SFRs

• SCON

– Controls the mode (SM0, SM1)

– Flags for when byte transmitted (TI) or received (RI)

– Bit for sending or receiving parity

• SBUF

– Holds byte result of send

– Holds byte result of receive

13

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Name SM0 SM1 SM2 REN TB8 RB8 TI RI

Serial port buffer (SBUF)

14

SBUF
(write-only)

Shift register

SBUF
(read-only)

TXD
(P3.1)

RXD
(P3.0)

Baud rate clock
(transmit)

Baud rate clock
(receive)

8051 Internal bus

Serial mode 1

• 8-bit UART

– Most common 8052 serial mode

– SM0 = 0, SM1 = 1

– Variable baud rate based on timer overflow

• Transmit:

– Put a byte in SBUF SFR

– Ten bits sent = start bit (0) + 8 data bits + stop bit (1)

– TI bit set when last bit sent

15

Serial mode 1

• Receive:

– Recognize incoming start bit on RXD
• Stop bit (1), start bit (0)

• Wait for 1-0 transition

– Ten bits received = start bit (0) + 8 data bits + stop bit (1)

– RI bit set when last bit received

16

Mode 1 procedure

• Step 1: Set mode bits in SCON

• Step 2: Start timer1 based on baud rate

• Step 3: Read/write byte

• Step 4: Wait for RI/TI bit to be set

17

SCON = 0x50; // 8-bit UART, timer1 as baud rate generator

TMOD = 0x20; // Set timer1 to 8-bit auto-reload

TH1 = 253; // Reload value of 253 (9600 baud)

TR1 = 1; // Start timer1

while (1)

{

 while (!RI) {} // Wait to receive a byte

 ch = SBUF; // Read character from serial port

 RI = 0; // Clear the receive flag

 TI = 0; // Clear the transmit flag

 SBUF = ch; // Echo the character back to serial port

 while (!TI) {} // Wait for byte to be transmitted

}

Timer setup

• How to determine reload value for timer?

– Timer1 8-bit auto-reload

– Set TH1, high byte of reload value
• The closer to 0xFF, the faster the baud rate

– Optionally set SMOD bit to double baud rate

18

𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 =
2𝑆𝑀𝑂𝐷 ∙ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟

32 ∙ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑐𝑦𝑐𝑙𝑒 ∙ (256 − 𝑇𝐻1)

9600 =
20 ∙ 11059200

32 ∙ 12 ∙ (256 − 𝑇𝐻1)

𝑇𝐻1 = 3

Why 11.0592 Mhz?

19

𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 =
2𝑆𝑀𝑂𝐷 ∙ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟

32 ∙ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑐𝑦𝑐𝑙𝑒 ∙ (256 − 𝑇𝐻1)

9600 =
20 ∙ 11059200

32 ∙ 12 ∙ (256 − 𝑇𝐻1)

𝑇𝐻1 = 3

9600 =
20 ∙ 12000000

32 ∙ 12 ∙ (256 − 𝑇𝐻1)

𝑇𝐻1 = 3.255208333333

Exactly 9600 baud

About 10417 baud

• Why the strange 8052 clock frequency

– Using TH1 and SMOD, can obtain exact baud rates

– Need to stay ±2.5% of ideal

Sample reload values

20

Baud rate Clock
frequency

SMOD TH1 reload
value

Actual baud
rate

Error

9600 12 Mhz 1 -7 (F9h) 8923 7%

2400 12 Mhz 0 -13 (F3h) 2404 0.16%

1200 12 Mhz 0 -26 (E6h) 1202 0.16%

19200 11.0592 Mhz 1 -3 (FDh) 19200 0%

9600 11.0592 Mhz 0 -3 (F4h) 9600 0%

2400 11.0592 Mhz 0 -12 (F4h) 2400 0%

1200 11.0592 Mhz 0 -24 (E8h) 1200 0%

Summary

• Serial communication

– Communication over a few wires

– RS-232 protocol
• Start, stop, parity bit

• Flow control

– UART
• Converts parallel data (byte) to serial data (bit signals on a wire)

– 8052 serial communication
• Setup SCON and timer

– Timer1 auto-reload

– Many exact baud rates possible with 11.0592 Mhz crystal

• Send / receive using SBUF

• TI / RI flags when byte done sent / received

21

