
Math and bit instructions,
indirect memory use

CSCI 255: Introduction to Embedded Systems • Keith Vertanen • Copyright © 2011

Overview

• Math operations

– Basic 8-bit math instructions

• Bit operations

– Bitwise AND, OR, XOR, shifting

• Indirect memory tricks

– Read from RAM

• Array-like functionality

– Read from code memory

• Storing fixed data

• Switch-case-like functionality

2

Math operations

• 8052 is an 8-bit microcontroller

– Most math operations 8-bit

– Multiplication the exception

• Supports only basic math operations

– Add, subtract, multiply and divide

3

Adding numbers

4

• ADD A, operand

– Add value in operand to the accumulator

– Leave result in the accumulator, operand not effected

– Ignores incoming Carry bit (C)

– 1-2 bytes, 1 cycle

• ADDC A, operand

– Add value in operand to the accumulator

– Leave result in the accumulator, operand not effected

– Uses incoming Carry bit (C)

– 1-2 bytes, 1 cycle

Adding numbers

• ADD and ADDC details

– If carry-out, Carry bit C set to 1

– Carry out occurs if unsigned sum of A, operand
and any incoming carry is > 255

– Overflow bit (OV) set if sum is out of ranged of a
signed byte (-128 through +127)

5

Subtraction

• SUBB A, operand

– Subtract the value of operand from A

– Leave the result in accumulator, operand not
effected

– Carry bit C set if borrow required (i.e. the
unsigned operand being subtracted > A)

– 1-2 bytes, 1 cycle

6

Division

• DIV AB

– Divide unsigned value of accumulator (A) by the B
register.

– Resulting quotient placed in A

– Remainder placed in B

– Operand always "AB", no other choice

– 1 byte, 4 cycles

7

Multiplication

• MUL AB

– Multiplies unsigned value in A by the B register

– 16-bit result

• Least significant byte in A

• Most significant byte in B

– Operand always "AB", no other choice

– 1 byte, 4 cycles

8

Bit operations

• ORL operand1, operand2

– Bitwise OR of 8-bit values

• ANL operand1, operand2

– Bitwise AND of 8-bit values

• XRL operand1, operand2

– Bitwise XOR of 8-bit values

• CPL operand

– Bitwise complement, 1-bit address or Carry (C) bit

– Or 8-bit value in Accumulator (A)

9

Bit shifting

• Rotate bit values in Accumulator (A)

– Optionally rotate through Carry bit (C)

10

C 7 6 4 3 2 1 0 RR A

C 7 6 4 3 2 1 0 RRC A

C 7 6 4 3 2 1 0 RL A

C 7 6 4 3 2 1 0 RLC A

Rotating for fun and profit

11

; Multiply the accumulator by 2

; 4 bytes code, 6 cycles

MOV B, #2

MUL AB

; Multiply the accumulator by 2

; 2 bytes code, 2 cycles

CLR C

RLC A

• Rotates can be used to quickly:

– Multiply by 2

– Divide by 2 (dropping remainder)

– Must take care to clear Carry bit (C)

Indirect addressing

• Indirect addressing

– e.g. MOV A, @R0

– Read the value of R0, obtain value at memory
pointed to by R0

– Allows us to get to second 128 bytes of RAM

– Example:

MOV R0, #40h

MOV A, @R0

Register R0 holds value 40h, load accumulator with
whatever is stored at RAM address 40h

12

Array-like maneuvers

• Use indirect addressing

– Put memory address in register

– Increment / decrement register

• Moves around the block of memory representing the
"array"

– Get/set values using MOV and indirect addressing

13

Initializing an array

14

; Parameters to our ArrayInit subroutine

ArrayNum EQU 30h ; Where our array starts

ArrayMemStart EQU 31h ; 1st memory location in the array

ArrayInitVal EQU 32h ; What value to load into array

Start:

 MOV ArrayNum, #10

 MOV ArrayMemStart, #40h

 MOV ArrayInitVal, #0ABh

 CALL ArrayInit

 JMP Start

;;

; Init the memory in an array to a value, uses R0 and R1

ArrayInit:

 MOV R0, ArrayNum

 MOV R1, ArrayMemStart

ArrayInitLoop:

 MOV @R1, ArrayInitVal

 INC R1

 DJNZ R0, ArrayInitLoop

 RET

Implementing switch-case logic

• Goal: run different code for a fixed set of
values currently stored in A (0, 1, or 2)

• Option 1: use multiple CJNE instructions

15

; Run code based on whether the accumulator is 0, 1 or 2

 CJNE A, #0, Check1

 JMP A_IS0

Check1:

 CJNE A, #1, Check2

 JMP A_IS1

Check2:

 JMP A_IS2

A_IS0: ...

A_IS1: ...

A_IS2: ...

Jump lists

• Option 2: use a jump list

– Jump to a location in code based on value in A

– Use DPTR since we need 2-bytes for code address

16

; Run code based on whether the accumulator is 0, 1 or 2

Start:

 MOV A, #2 ; Load the value we are testing

 RL A ; Double A, code addr = 2 bytes

 MOV DPTR, #JumpTable ; Starting code address

 JMP @A+DPTR ; Go go gadget jump

JumpTable:

 JMP A_IS0

 JMP A_IS1

 JMP A_IS2

A_IS0: ...

A_IS1: ...

A_IS2: ...

Jump lists

• Why?

– Saves code memory for 2+ case "switches"

– Deterministic runtime

• Same # of cycles regardless of value being tested

• Not true for a repeated CJNE approach

17

Code indirect addressing

• MOVC A, @A+DPTR

• MOVC A, @A+PC

– Moves byte from code memory into accumulator

– Code memory address is:

• Value in accumulator

• Plus Data Pointer (DPTR) or Program Counter (PC).

– In case of @A+PC form, PC is incremented by one
before adding

18

Code indirect addressing

• Put table of fixed values in memory

• Read in programmatically MOVC A, @A + PC

19

; Copy a sequence stored in code memory to the LEDs

Start:

 MOV R0, #5

Loop:

 MOV A, R0

 MOV DPTR, #Values

 MOVC A,@A+DPTR

 MOV P0,A

 DJNZ R0, Loop

 JMP Start

Values:

 DB 00h,01h,02h,03h,04h,05h

Summary

• Math operations

– We can add, subtract, multiple and divide

– 8-bit numbers anyway

• Bit operations

– Bitwise AND, OR, XOR, rotating bits

• Indirect memory tricks
• Array-like functionality

• Switch-case-like functionality

• Storing fixed data in code memory

 20

