
More on variables, arrays, debugging

CSCI 135: Fundamentals of Computer Science I • Keith Vertanen • Copyright © 2011

zombie[0]

zombie[2] zombie[5]

zombie[1]
zombie[3]

zombie[4]

Buuuuugs…

Overview

2

• Variables revisited

– Scoping

• Arrays revisited

• Debugging

– Tip and tricks to help you keep your sanity

Variable scoping

• Variables live within their curly braces

– Once curly brace block finishes, variable is gone!

3

public class DoStuff

{

 public static void main(String [] args)

 {

 int x = 0;

 for (int y = 0; y < 5; y++)

 {

 x = x + y;

 }

 x = x * y;

 }

}

y only lives in the
for-loop

y is undefined,
this won't
compile!

Variable scoping

• You can declare same name again

– But only after no longer “in scope”

4

public class DoStuff

{

 public static void main(String [] args)

 {

 int x = 0;

 for (int y = 0; y < 5; y++)

 {

 x = x + y;

 }

 int y = 1;

 x = x * y;

 }

}

Arrays revisited

• Arrays

– Store a bunch of values under one name

– Declare and create in one line:

– To get at values, use name and index between []:

– Array indexes start at 0!

5

int N = 8;

int [] x = new int[10];

double [] speed = new double[100];

String [] names = new String[N];

int sumFirst2 = x[0] + x[1];

speed[99] = speed[98] * 1.1;

System.out.println(names[0]);

Arrays revisited

• Arrays

– You can just declare an array:

– But x is not very useful until you “new” it:

– new creates the memory for the slots

• Each slot holds an independent int value

• Each slot initialized to default value for type

6

int [] x;

int [] x;

x = new int[7];

Arrays revisited

7

x

• x refers to the whole set of slots
• You can’t use the variable x by itself for much
• Except for finding out the number of slots: x.length

Arrays revisited

8

x

• x[0],x[1],…,x[6] refers to the value at a particular slot
• x[-1] or x[7] is an ArrayIndexOutOfBoundsException

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

Arrays revisited

9

x

• x[i] refers to the value at a slot, but the slot index is
determined by variable i
• if i = 0 then x[0], if i = 1 then x[1], etc.

• Whatever is inside [] must be an int
• Whatever is inside [] must be from 0 to x.length - 1

(inclusive)

x[i]

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

Debugging

10

• Majority of program development time:

– Finding and fixing mistakes! a.k.a. bugs

– It’s not just you: bugs happen to all programmers

Debugging

11

• Computers can help find bugs

– But: computer can’t automatically find all bugs!

• Computers do exactly what you ask not
necessarily what you want

• There is always a logical explanation!

– Make sure you saved & compiled last change

“There has never been an unexpectedly short
debugging period in the history of computers.”
 -Steven Levy

“As soon as we started programming, we found out to our surprise that it wasn't as easy to
get programs right as we had thought. Debugging had to be discovered. I can remember
the exact instant when I realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs.”
 -Maurice Wilkes

Preventing bugs

• Have a plan

– Write out steps in English before you code

– Write comments first before tricky bits

• Use good coding style

– Good variable names

• If variable is called area it should hold an area!

– Split complicated stuff into manageable steps

– ()’s are free, force order of operations you want

– Carefully consider loop bounds

• Listen to Eclipse (IDE) feedback
12

Finding bugs

• How to find bugs

– Add debug print statements

• Print out state of variables, loop values, etc.

• Remove before submitting

– Use debugger in your IDE

• Won’t work for programs using file redirection

– Talk through program line-by-line

• Explain your program to a novice

13

Debugging example

• Problem:

– Given an integer N > 1, compute its prime
factorization

• 98 = 2 x 7 x 7

• 17 = 17

• 154 = 2 x 7 x 11

• 16562 = 2 x 7 x 7 x 13 x 13

– Possible application: Break RSA encryption (used
in Internet commerce)

14

A simple algorithm

• Problem:

– Given an integer N > 1, compute its prime
factorization

• Algorithm:

– Starting with i=2, repeatedly divide N by i as long
as it evenly divides, output i every time it divides

– Increment i

– Repeat

15

Example run

16

i N Output

2 16562 2

3 8281

4 8281

5 8281

6 8281

7 8281 7 7

8 169

9 169

10 169

11 169

12 169

13 169 13 13

14 1

… 1

Buggy factorization program

17

public class Factor

{

 public static void main(String [] args)

 {

 long n = Long.parseLong(args[0])

 for (i = 0; i < n; i++)

 {

 while (n % i == 0)

 System.out.print(i + " ")

 n = n / i

 }

 }

}

This program has many bugs!

Incremental development

• Split development into stages:

– Test thoroughly after each stage

• Don’t move on until it’s working!

– Example: LoggingLease

18

LoggingLease development

19

Stage Goal Testing

1 Parse command line option, calculate how big
lease is on each side.

Print out side length (temporary).

2 Read height, width and number of points from
StdIn.

Print height, width, and number
points (temporary).

3 Declare, create and read data into arrays from
StdIn. Count trees and bear dens.

Print out number of trees and
bear dens.

4 Loop over all valid southwest corners for leases. Print out each SW corner
(temporary).

5 For each valid lease, find all points in that lease. For each SW corner, print all
points in that lease (temporary).

6 Add logic to find total cubic feet of wood in a
given lease and to determine if a bear den is in
the lease.

For each SW corner, print out
wood total and if there is a bear.

7 Add logic to keep track of best bear-free lease.
Output final result.

Compare with our sample outputs.

• One possible set of development stages:

Incremental development

• Split development into stages

– Test thoroughly after each stage

– Example: MarsLander
 http://www.youtube.com/watch?v=Ene3LYsRMco

20

http://www.youtube.com/watch?v=Ene3LYsRMco

MarsLander development

21

Stage Goal Testing

1 Read in data from file into variables Print things back out to console

2 Load the images, setup drawing window, draw
background, ship, landing pad.

Static lander in correct position on
top of Mars background

3 Add physics so lander starts moving Lander attracted to ground and
just keeps on going

4 Add in keyboard input, adjust velocity based on
input

Lander that can be flown around

5 Change lander image based on keyboard input,
play thruster sound, update fuel counter

Lander can be flown around with
visual and audio feedback,
thrusters disabled once out of fuel

6 Detect contact with ground, change image and
play sound for good or bad landing

Complete game.

• One possible set of development stages:

Summary

• Variables

– Live within their curly braces

• Arrays

– Hold a set of independent values of same type

– Access single value via index between []’s

• Debugging

– Have a plan before coding, use good style

– Learn to trace execution

• On paper or with print statements

– Incremental development

22

