Of enumerations, switches and snakes

CSCl 135: Fundamentals of Computer Science | ® Keith Vertanen e Copyright © 2011

Overview

* Avoiding magic numbers
— Variables takes on a small set of values
— Use descriptive names instead of literal values

* Testing a variable against many values
— Execute a block of code depending on the value
— Avoid a big if-else-if-else if-... block

* Making a snake game

Variables from a set of values

* Magic numbers

— Where did the value come from?

— What does it mean?

— What if you mistype the number?

>
— What if you want to keep value in specific range?

direction
direction
direction

int direction = 0;
if ((direction == 1)
(direction == 5)

{ /* TBD */ }

0;
87
=20 29;

| | (direction
| | (direction

// Valid???

// Valid??2?
// Valid??2?

)
))

e Solution 1: Create final constants
— Descriptive names means everybody can read
— Bugs less likely, typo in name = compile error
— Final keyword ensures nobody can change value

final int NORTH = 0;

final int NORTHEAST = 1;

final int EAST = 2;

final int SOUTHEAST = 3;

final int SOUTH = 4;

final int SOUTHWEST = 5;

final int WEST = 6;

final int NORTHWEST = 7;

int direction = NORTH;

if ((direction == NORTHEAST) || (direction == SOUTHEAST) ||
(direction == SOUTHWEST) || (direction == NORTHWEST))

{ // TBD }

Constants not always ideal

final int NORTH :ﬁ
final int NORTHEAST = 1;
final int EAST = J¢ Problem 1: Tedious to type.
final int SOUTHEAST 38 3 — | Also easy to mess up, e.g.
:’_-nai :_"nt SOUTH = 47 setting two constants to
%na %nt SOUTHWEST 5; same value.
final int WEST ©;

' NORTHWEST = 7;

int directio

if ((directi
(directi

{/* TBD */}

n:@_/

Problem 2: Not forced to use, we
can avoid using the friendly names.

on
on

NORTHEAST)
SOUTHWEST)

direction = 0; [/ Valid???
direction = 8;
direction = -2729;

// Valid??2?
// Valid??2?) S

(direction
(direction

SOUTHEAST)
NORTHWEST))

Problem 3: Not forced to stay
in range. What does it mean
to be 8 or -2729 if you are a
compass direction?

Enumerations

* A better solution: enumerations
— Specifies exact set of friendly names

— Compiler ensures we stay in range

Easiest to

enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST, declare outside
— SOUTH, SOUTHWEST, WEST, NORTHWEST})%=l class.

public class CompassTest Semicolon is

{ optional.

public static void main(String [] args)

{

Compass direction = Compass.NORTH;

if ((direction == Compass.NORTHEAST) | |
(direction == Compass.SOUTHEAST) ||
(direction == Compass.SOUTHWEST) ||
(direction == Compass.NORTHWEST))
{/* TBD */}

direction _) Now a compile error.
(: Way to watch our back compiler!

Enumeration tricks

* Enumerations
— Actually objects with a few handy methods:

toString () Print out friendly name corresponding to value of variable

values () Returns array of all the possible values type can take on

enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST,
SOUTH, SOUTHWEST, WEST, NORTHWEST}

for (Compass d : direction.values())
{
if (checkMonster (hero, d))
System.out.println("You see a monster to the " +
d.toString());

Conditional action from a set

* Do something depending on a value value
— if-else if-else if... statements can get tedious

if (day == 1) } i
eTihEEE — Viemekg s Set a String variable
else if (day == 2) monthStr to a string
monthStr = "Tuesday"; according to the
else if (day == 3) integer value in the
monthStr = "Wednesday"; day variable.
else if (day == 4)
monthStr = "Thursday";
else if (day == 5H)
monthStr = "Friday";
else if (day == 6)
monthStr = "Saturday";
else if (day == 7)
monthStr = "Sunday";
else
monthStr = "Invalid day!";

Conditional action from a set

e switch statement

— Works With!byte, short, char, int,

default block is optional, but if present
executes if no other case matched. Like
the else in an if-else if-else statement.

enumerations

switch (day) case block

{ normally ends
case 1: monthStr = "Monday"; break; with a break
case 2: monthStr = "Tuesday"; break;
case 3: monthStr = "Wednesday"; break;
case 4: monthStr = "Thursday"; break;
case 5: monthStr = "Friday"; break;
case 6: monthStr = "Saturday"; break;
case 7: monthStr = "Sunday"; break;

(default: monthStr = "Invalid day!"; break;)
} ———

switch statement

Compass direction = Compass.NORTH;

switch (direction Note: normally you need
"Compass.", but not in switch

L
case- case since Java knows type

hero.move (
System.out.prlntln("Walking north") ;
break;

case SQUTH.: —

(/Eg;o.move(o, -1);
System.out.println ("Walking south");

break; — ——
case FEAST:
hero.move (1, 0);
System.out.println("Walking east");
break;
case WEST:
hero.move (-1, 0);

System.out.println("Walking west");
break;

You can have as
many statements
as you want
between case and
break.

10

Buggy switch statement

Compass direction = Compass.NORTH;

switch (direction)
{
case NORTH:
hero.move (0, 1);
System.out.println("Walking
case SQOUTH:
hero.move (0, -1);
System.out.println ("Walking
case FEAST:
hero.move (1, 0);
System.out.println ("Walking
case WEST:
hero.move (-1, 0);
System.out.println ("Walking

case blocks with fall
through to next block if
you don't use the break

statement!

north") ;

south"); |Output:
Walking north

east"); Walking south
Walking east
Walking west

west") ;

11

Falling through cases

Sometimes falling through

Compass direction = Compass.SOUTHEAST; to next case block is what

switch (direction) you want.

{ Easy way to do same thing

case NORTHWEST: f t fd' t |
case NORTHEAST: oraseto ISCrete values.

case NORTH:
System.out.println ("Heading northbound") ;
break;

case SOUTHWEST:

case SOUTHEAST:

case SOUTH:
System.out.println ("Heading southbound") ;
break;

} Output:

Heading southbound

Snake game

13

